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Abstract. A constructive proof of the Gödel-Rosser incompleteness the-
orem [9] has been completed using the Coq proof assistant. Some theory
of classical first-order logic over an arbitrary language is formalized. A
development of primitive recursive functions is given, and all primitive
recursive functions are proved to be representable in a weak axiom sys-
tem. Formulas and proofs are encoded as natural numbers, and functions
operating on these codes are proved to be primitive recursive. The weak
axiom system is proved to be essentially incomplete. In particular, Peano
arithmetic is proved to be consistent in Coq’s type theory and therefore
is incomplete.
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1 Introduction

The Gödel-Rosser incompleteness theorem for arithmetic states that any com-
plete first-order theory of a nice axiom system, using only the symbols +, ×,
0, S, and < is inconsistent. A nice axiom system must contain the nine specific
axioms of a system called NN. These nine axioms serve to define the previous
symbols. A nice axiom system must also be expressible in itself. This last re-
striction prevents the incompleteness theorem from applying to axioms systems
such as the true first order statements about N.

? This paper appears in the proceedings of the 18th International Conference on The-
orem Proving in Higher Order Logics (TPHOLs 2005)
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A computer verified proof of Gödel’s incompleteness theorem is not new.
In 1986 Shankar created a proof of the incompleteness of Z2, hereditarily fi-
nite set theory, in the Boyer-Moore theorem prover [11]. My work is the first
computer verified proof of the essential incompleteness of arithmetic. Harrison
recently completed a proof in HOL Light [6] of the essential incompleteness ofΣ1-
complete theories, but has not shown that any particular theory is Σ1-complete.
His work will be included in the next release of HOL Light.

My proof was developed and checked in Coq 7.3.1 using Proof General under
XEmacs. It is part of the user contributions to Coq and can be checked in Coq
8.0 [14]. Examples of source code in this document use the new Coq 8.0 notation.

Coq is an implementation of the calculus of (co)inductive constructions. This
dependent type theory has intensional equality and is constructive, so my proof is
constructive. Actually the proof depends on the Ensembles library which declares
an axiom of extensionality for Ensembles, but this axiom is never used.

This document points out some of the more interesting problems I encoun-
tered when formalizing the incompleteness theorem. My proof mostly follows the
presentation of incompleteness given in An Introduction to Mathematical Logic
[10]. I referred to the supplementary text for the book Logic for Mathematics
and Computer Science [1] to construct Gödel’s β-function. I also use part of
Caprotti and Oostdijk’s contribution of Pocklington’s criterion [2] to prove the
Chinese remainder theorem.

This document is organized as follows. First I discuss the difficulties I had
when formalizing classical first-order logic over an arbitrary language. This is
followed by the definition of a language LNN and an axiom system called NN.
Next I give the statement of the essential incompleteness of NN. Then I briefly
discuss coding formulas and proofs as natural numbers. Next I discuss primitive
recursive functions and the problems I encountered when trying to prove that
substitution can be computed by a primitive recursive function. Finally I briefly
discuss the fixed-point theorem, Rosser’s incompleteness theorem, and the in-
completeness of PA. At the end I give some remarks about how to extend my
work in order to formalize Gödel’s second incompleteness theorem.

1.1 Coq Notation

For those not familiar with Coq syntax, here is a short list of notation

– ->, /\, \/, and ~ are the logical connectives ⇒, ∧, ∨, and ¬.
– A -> B, A * B, and A + B form function types, Cartesian product types,

and disjoint union types.
– *, +, and S are the arithmetic operations of multiplication, addition, and

successor.
– inl and inr are the left and right injection functions of types A -> A + B

and B -> A + B.
– ::, and ++ are the list operations cons, and append.
– is an omitted parameter that Coq can infer itself.

For more details see the Coq 8.0 reference manual [14].



2 First-Order Classical Logic

I began by developing the theory of first order classical logic inside Coq. In
essence Coq’s logic is a formal metalogic to reason about this internal logic.

2.1 Definition of Language

I immediately took advantage of Coq’s dependent type system by defining
Language to be a dependent record of types for symbols and an arity function
from symbols to N. The Coq code is:

Record Language : Type := language
{Relations : Set;
Functions : Set;
arity : Relations + Functions -> nat}.

In retrospect it would have been slightly more convenient to use two arity func-
tions instead of using the disjoint union type.

This approach differs from Harrison’s definition of first order terms and for-
mulas in HOL Light [5] because HOL Light does not have dependent types.
Dependent types allow the type system to enforce that all terms and formulas
of a given language are well formed.

2.2 Definition of Term

For any given language, a Term is either a variable indexed by a natural number
or a function symbol plus a list of n terms where n is the arity of the function
symbol. My first attempt at writing this in Coq failed.

Variable L : Language.
(* Invalid definition *)
Inductive Term0 : Set :=
| var0 : nat -> Term0
| apply0 : forall (f : Functions L) (l : List Term0),

(arity L (inr _ f))=(length l) -> Term0.

The type (arity L (inr f))=(length l) fails to meet Coq’s positivity re-
quirement for inductive types. Expanding the definition of length reveals a
hidden occurrence of Term0 which is passed as an implicit argument to length.
It is this occurrence that violates the positivity requirement.

My second attempt met the positivity requirement, but it had other difficul-
ties. A common way to create a polymorphic lists of length n is:

Inductive Vector (A : Set) : nat -> Set :=
| Vnil : Vector A 0
| Vcons : forall (a : A) (n : nat),

Vector A n -> Vector A (S n).



Using this I could have defined Term like:

Variable L : Language.

Inductive Term1 : Set :=
| var1 : nat -> Term1
| apply1 : forall f : Functions L,

(Vector Term1 (arity L (inr _ f))) -> Term1.

My difficulty with this definition was that the induction principle generated by
Coq is too weak to work with.

Instead I created two mutually inductive types: Term and Terms.

Variable L : Language.

Inductive Term : Set :=
| var : nat -> Term
| apply : forall f : Functions L,

Terms (arity L (inr _ f)) -> Term
with Terms : nat -> Set :=
| Tnil : Terms 0
| Tcons : forall n : nat,

Term -> Terms n -> Terms (S n).

Again the automatically generated induction principle is too weak, so I used the
Scheme command to generate suitable mutual-inductive principles.

The disadvantage of this approach is that useful lemmas about Vectors must
be reproved for Terms. Some of these lemmas are quite tricky to prove because
of the dependent type. For example, proving forall x : Terms 0, Tnil = x
is not easy.

Recently, Marche has shown me that the Term1 definition would be adequate.
One can explicitly make a sufficient induction principle by using nested Fixpoint
functions [7].

2.3 Definition of Formula

The definition of Formula was straightforward.

Inductive Formula : Set :=
| equal : Term -> Term -> Formula
| atomic : forall r : Relations L, Terms (arity L (inl _ r)) ->

Formula
| impH : Formula -> Formula -> Formula
| notH : Formula -> Formula
| forallH : nat -> Formula -> Formula.

I defined the other logical connectives in terms of impH, notH, and forallH.



The H at the end of the logic connectives (such as impH) stands for “Hilbert”
and is used to distinguish them from Coq’s connectives.

For example, the formula ¬∀x0.∀x1.x0 = x1 would be represented by:

notH (forallH 0 (forallH 1 (equal (var 0) (var 1))))

It would be nice to use higher order abstract syntax to handle bound variables
by giving forallH the type (Term -> Formula) -> Formula. I would represent
the above example as:

notH (forallH (fun x : Term =>
(forallH (fun y : Term => (equal x y)))))

This technique would require addition work to disallow “exotic terms” that are
created by passing a function into forallH that does a case analysis on the
term and returning entirely different formulas in different cases. Despeyroux et
al. [3] address this problem by creating a complicated predicate that only valid
formulas satisfy.

Another choice would have been to use de Bruijn indexes to eliminate named
variables. However dealing with free and bound variables with de Bruijn indexes
can be difficult.

Using named variables allowed me to closely follow Hodel’s work [10]. Also, in
order to help persuade people that the statement of the incompleteness theorem
is correct, it is helpful to make the underlying definitions as familiar as possible.

Renaming bound variables turned out to be a constant source of work during
development because variable names and terms were almost always abstract. In
principle the variable names could conflict, so it was constantly necessary to
consider this case and deal with it by renaming a bound variable to a fresh one.
Perhaps it would have been better to use de Bruijn indexes and a deduction
system that only deduced closed formulas.

2.4 Definition of substituteFormula

I defined the function substituteFormula to substitute a term for all oc-
currences of a free variable inside a given formula. While the definition of
substituteTerm is simple structural recursion, substitution for formulas is com-
plicated by quantifiers. Suppose we want to substitute the term s for xi in the
formula ∀xj .ϕ and i 6= j. Suppose xj is a free variable of s. If we näıvely perform
the substitution then the occurrences of xj in s get captured by the quantifier.
One common solution to this problem is to disallow substitution for a term s
when s is not substitutable for xi in ϕ. The solution I take is to rename the
bound variable in this case.

(∀xj .ϕ)[xi/s]
def= ∀xk.(ϕ[xj/xk])[xi/s] where k 6= i and xk is not free inϕ or s

Unfortunately this definition is not structurally recursive. The second substitu-
tion operates on the result of the first substitution, which is not structurally
smaller than the original formula.



Coq will not accept this recursive definition as is; it is necessary to prove
the recursion will terminate. I proved that substitution preserves the depth of a
formula, and that each recursive call operates on a formula of smaller depth.

One of McBride’s mantras says, “If my recursion is not structural, I am us-
ing the wrong structure” [8, p. 241]. In this case, my recursion is not structural
because I am using the wrong recursion. Stoughton shows that it is easier to
define substitution that substitutes all variables simultaneously because the re-
cursion is structural [13]. If I had made this definition first, I could have defined
substitution of one variable in terms of it and many of my difficulties would have
disappeared.

2.5 Definition of Prf

I defined the inductive type (Prf Gamma phi) to be the type of proofs of phi,
from the list of assumptions Gamma.

Inductive Prf : Formulas -> Formula -> Set :=
| AXM : forall A : Formula, Prf (A :: nil) A
| MP : forall (Axm1 Axm2 : Formulas) (A B : Formula),

Prf Axm1 (impH A B) -> Prf Axm2 A ->
Prf (Axm1 ++ Axm2) B

| GEN : forall (Axm : Formulas) (A : Formula) (v : nat),
~ In v (freeVarListFormula L Axm) -> Prf Axm A ->

Prf Axm (forallH v A)
| IMP1 : forall A B : Formula, Prf nil (impH A (impH B A))
| IMP2 : forall A B C : Formula,

Prf nil (impH (impH A (impH B C))
(impH (impH A B) (impH A C)))

| CP : forall A B : Formula,
Prf nil (impH (impH (notH A) (notH B)) (impH B A))

| FA1 : forall (A : Formula) (v : nat) (t : Term),
Prf nil (impH (forallH v A) (substituteFormula L A v t))

| FA2 : forall (A : Formula) (v : nat),
~ In v (freeVarFormula L A) ->

Prf nil (impH A (forallH v A))
| FA3 : forall (A B : Formula) (v : nat),

Prf nil
(impH (forallH v (impH A B))

(impH (forallH v A) (forallH v B)))
| EQ1 : Prf nil (equal (var 0) (var 0))
| EQ2 : Prf nil (impH (equal (var 0) (var 1))

(equal (var 1) (var 0)))
| EQ3 : Prf nil

(impH (equal (var 0) (var 1))
(impH (equal (var 1) (var 2)) (equal (var 0) (var 2))))

| EQ4 : forall R : Relations L, Prf nil (AxmEq4 R)



| EQ5 : forall f : Functions L, Prf nil (AxmEq5 f).

AxmEq4 and AxmEq5 are recursive functions that generate the equality axioms for
relations and functions. AxmEq4 R generates

x0 = x1 ⇒ . . . ⇒ x2n−2 = x2n−1 ⇒ (R(x0, . . . ,x2n−2) ⇔ R(x1, . . . ,x2n−1))

and AxmEq5 f generates

x0 = x1 ⇒ . . . ⇒ x2n−2 = x2n−1 ⇒ f(x0, . . . ,x2n−2) = f(x1, . . . ,x2n−1)

I found that replacing ellipses from informal proofs with recursive functions
was one of the most difficult tasks. The informal proof does not contain informa-
tion on what inductive hypothesis should be used when reasoning about these
recursive definitions. Figuring out the correct inductive hypotheses was not easy.

2.6 Definition of SysPrf

There are some problems with the definition of Prf given. It requires the list
of axioms to be in the correct order for the proof. For example, if we have Prf
Gamma1 (impH phi psi) and Prf Gamma2 phi then we can conclude only Prf
Gamma1++Gamma2 psi. We cannot conclude Prf Gamma2++Gamma1 psi or any
other permutation of psi. If an axiom is used more than once, it must appear
in the list more than once. If an axiom is never used, it must not appear. Also,
the number of axioms must be finite because they form a list.

To solve this problem, I defined a System to be Ensemble Formula, and
(SysPrf T phi) to be the proposition that the system T proves phi.

Definition System := Ensemble Formula.
Definition mem := Ensembles.In.

Definition SysPrf (T : System) (f : Formula) :=
exists Axm : Formulas,
(exists prf : Prf Axm f,

(forall g : Formula, In g Axm -> mem _ T g)).

Ensemble A represents subsets of A by the functions A -> Prop. a : A is consid-
ered to be a member of T : Ensemble A if and only if the type T a is inhabited.
I also defined mem to be Ensembles.In so that it does not conflict with List.In.

2.7 The Deduction Theorem

The deduction theorem states that if Γ ∪ {ϕ} ` ψ then Γ ` ϕ ⇒ ψ.
There is a choice of whether the side condition for the ∀-generalization rule,

~ In v (freeVarListFormula L Axm), should be required or not. If this side
condition is removed then the deduction theorem requires a side condition on it.
Usually all the formulas in an axiom system are closed, so the side condition on



the ∀-generalization is easy to show. So I decided to keep the side condition on
the ∀-generalization rule.

At one point the proof of the deduction theorem requires proving that if
Γ ∪ {ϕ} ` ψ because ψ ∈ Γ ∪ {ϕ}, then Γ ` ϕ ⇒ ψ. There are two cases
to consider. If ψ = ϕ then the result easily follows from the reflexivity of ⇒.
Otherwise ψ ∈ Γ , and therefore Γ ` ψ. The result then follows. In order to
constructively make this choice it is necessary to decide whether ψ = ϕ or not.
This requires Formula to be a decidable type, and that requires the language L
to be decidable. Since L could be anything, I needed to add hypotheses that the
function and relation symbols are decidable types.

– forall x y : Functions L, { x=y } + { x<>y }
– forall x y : Relations L, { x=y } + { x<>y }.

I used the deduction theorem without restriction and ended up using the hy-
potheses in many lemmas. I expect that many of these lemmas could be proved
without assuming the decidability of the language. It is hard to imagine a use-
ful language that is not decidable, so I do not feel too bad about using these
hypotheses in unnecessary places.

2.8 Languages and Theories of Number Theory

I created two languages. The first language, LNT, is the language of number
theory and just has the function symbols Plus, Times, Succ, and Zero with
appropriate arities. The second language, LNN, is the language of NN and has
the same function symbols as LNT plus one relation symbol for less than, LT.

I define two axiom systems: NN and PA. NN and PA share six axioms.

1. ∀x0.¬Sx0 = 0
2. ∀x0.∀x1.(Sx0 = Sx1 ⇒ x0 = x1)
3. ∀x0.x0 + 0 = x0

4. ∀x0.∀x1.x0 + Sx1 = S(x0 + x1)
5. ∀x0.x0 × 0 = 0
6. ∀x0.∀x1.x0 × Sx1 = (x0 × x1) + x0

NN has three additional axioms about less than.

1. ∀x0.¬x0 < 0
2. ∀x0.∀x1.(x0 < Sx1 ⇒ (x0 = x1 ∨ x0 < x1))
3. ∀x0.∀x1.(x0 < x1 ∨ x0 = x1 ∨ x1 < x0)

PA has an infinite number of induction axioms that follow one schema.

1. (schema) ∀xi1 . . . .∀xin
.ϕ[xj/0] ⇒ ∀xj .(ϕ ⇒ ϕ[xj/Sxj ]) ⇒ ∀xj .ϕ

The xi1 , . . . ,xin
are the free variables of ∀xj .ϕ. The quantifiers ensure that all

the axioms of PA are closed.
Because NN is in a different language than PA, a proof in NN is not a

proof in PA. In order to reuse the work done in NN, I created a function



called LNN2LNT formula to convert formulas in LNN into formulas in LNT by
replacing occurrences of t0 < t1 with (∃x2.x0 + (Sx2) = x1)[x0/t0,x1/t1]—
ϕ[x0/t0,x1/t1] is the simultaneous substitution of t0 for x0 and t1 for x1. Then
I proved that if NN ` ϕ then PA ` LNN2LNT formula(ϕ).

I also created the function natToTerm : nat -> Term to return the closed
term representing a given natural number. In this document I will refer to this
function as p�q, so p0q = 0, p1q = S0, etc.

3 Coding

To prove the incompleteness theorem, it is necessary for the inner logic to reason
about proofs and formulas, but the inner logic can only reason about natural
numbers. It is therefore necessary to code proofs and formulas as natural num-
bers.

Gödel’s original approach was to code a formula as a list of numbers and
then code that list using properties from the prime decomposition theorem[4].
I avoided needing theorems about prime decomposition by using the Cantor
pairing function instead. The Cantor pairing function, cPair, is a commonly
used bijection between N×N and N.

cPair(a, b) def= a+
a+b∑
i=1

i

All my inductive structures were easy to recursively encode. I gave each con-
structor a unique number and paired that number with the encoding of all its
parameters. For example, I defined codeFormula as:

Fixpoint codeFormula (f : Formula) : nat :=
match f with
| fol.equal t1 t2 => cPair 0 (cPair (codeTerm t1) (codeTerm t2))
| fol.impH f1 f2 =>

cPair 1 (cPair (codeFormula f1) (codeFormula f2))
| fol.notH f1 => cPair 2 (codeFormula f1)
| fol.forallH n f1 => cPair 3 (cPair n (codeFormula f1))
| fol.atomic R ts => cPair (4+(codeR R)) (codeTerms _ ts)
end.

where codeR is a coding of the relation symbols for the language.
I will use pϕq for pcodeFormula ϕq and ptq for pcodeTerm tq.

4 The Statement of Incompleteness

The incompleteness theorem states the essential incompleteness of NN, meaning
that for every axiom system T such that

– NN ⊆ T



– T can represent its own axioms
– T is a decidable set

then there exists a sentence ϕ such that if T ` ϕ or T ` ¬ϕ then T is inconsistent.
The theorem is only about proofs in LNN, the language of NN. This statement

does not show the incompleteness of theories that extend the language.
In Coq the theorem is stated as as:

Theorem Incompleteness
: forall T : System,
Included Formula NN T ->
RepresentsInSelf T ->
DecidableSet Formula T ->
exists f : Formula,
Sentence f /\
(SysPrf T f \/ SysPrf T (notH f) -> Inconsistent LNN T).

A System is Inconsistent if it proves all formulas.

Definition Inconsistent (T : System) :=
forall f : Formula, SysPrf T f.

A Sentence is a Formula without any free variables.

Definition Sentence (f : Formula) :=
forall v : nat, ~ In v (freeVarFormula LNN f).

A DecidableSet is an Ensemble such that every item either belongs to the
Ensemble or does not belong to the Ensemble. This hypothesis is trivially true
in classical logic, but in constructive logic I needed it to prove the strong con-
structive existential quantifier in the statement of incompleteness.

Definition DecidableSet (A : Type)(s : Ensemble A) :=
forall x : A, mem A s x \/ ~ mem A s x.

The RepresentsInSelf hypothesis restricts what the System T can be. The
statement of essential incompleteness normally requires T be a recursive set.
Instead I use the weaker hypothesis that the set T is expressible in the system
T .

Given a system T extending NN and another system U along with a formula
ϕU with at most one free variable xi, we say ϕU expresses the axiom system U
in T if the following hold for all formulas ψ.

1. if ψ ∈ U then T ` ϕU [xi/pψq]
2. if ψ 6∈ U then T ` ¬ϕU [xi/pψq]

U is expressible in T if there exists a formula ϕU such that ϕU expresses the
axiom system U in T .

In Coq I write the statement T is expressible in T as



Definition RepresentsInSelf (T : System) :=
exists rep : Formula, exists v : nat,
(forall x : nat, In x (freeVarFormula LNN rep) -> x = v) /\
(forall f : Formula,

mem Formula T f ->
SysPrf T (substituteFormula LNN rep v

(natToTerm (codeFormula f)))) /\
(forall f : Formula,

~ mem Formula T f ->
SysPrf T (notH (substituteFormula LNN rep v

(natToTerm (codeFormula f))))).

This is weaker than requiring that T be a recursive set because any recursive set
of axioms T is expressible in NN. Since T is an extension of NN, any recursive
set of axioms T is expressible in T .

By using this weaker hypothesis I avoid defining what a recursive set is. Also,
in this form the theorem could be used to prove that any complete and consistent
theory of arithmetic cannot define its own axioms. In particular, this could be
used to prove Tarski’s theorem that the truth predicate is not definable.

5 Primitive Recursive Functions

A common approach to proving the incompleteness theorem is to prove that
every primitive recursive function is representable. Informally an n-ary function
f is representable in NN if there exists a formula ϕ such that

1. the free variables of ϕ are among x0, . . . ,xn.
2. for all a1, . . . , an : N,

NN ` (ϕ ⇒ x0 = pf(a1, . . . , an)q)[x1/pa1q, . . . ,xn/panq]

I defined the type PrimRec n as:

Inductive PrimRec : nat -> Set :=
| succFunc : PrimRec 1
| zeroFunc : PrimRec 0
| projFunc : forall n m : nat, m < n -> PrimRec n
| composeFunc :

forall (n m : nat) (g : PrimRecs n m) (h : PrimRec m),
PrimRec n

| primRecFunc :
forall (n : nat) (g : PrimRec n) (h : PrimRec (S (S n))),

PrimRec (S n)
with PrimRecs : nat -> nat -> Set :=
| PRnil : forall n : nat, PrimRecs n 0
| PRcons : forall n m : nat,

PrimRec n -> PrimRecs n m -> PrimRecs n (S m).



PrimRec n is the expression of an n-ary primitive recursive function, but it is
not itself a function. I defined evalPrimRec : forall n : nat, PrimRec n
-> naryFunc n to convert the expression into a function. Rather than work-
ing directly with primitive recursive expressions, I worked with particular Coq
functions and proved they were extensionally equivalent to the evaluation of
primitive recursive expressions.

I proved that every primitive recursive function is representable in NN. This
required using Gödel’s β-function along with the Chinese remainder theorem.
The β-function is a function that codes array indexing. A finite list of numbers
a0, . . . , an is coded as a pair of numbers (x, y) and β(x, y, i) = ai. The β-function
is special because it is defined in terms of plus and times and is non-recursive.
The Chinese remainder theorem is used to prove that the β-function works.

I took care to make the formulas representing the primitive recursive func-
tions clearly Σ1 by ensuring that only the unbounded quantifiers are existential;
however, I did not prove that the formulas are Σ1 because it is not needed for
the first incompleteness theorem. Such a proof could be used for the second
incompleteness theorem [12].

5.1 codeSubFormula is Primitive Recursive

I proved that substitution is primitive recursive. Since substitution is defined
in terms of Formula and Term, it itself cannot be primitive recursive. Instead I
proved that the corresponding function operating on codes is primitive recursive.
This function is called codeSubFormula and I proved it is correct in the following
sense.

codeSubFormula(pϕq, i, psq) = pϕ[xi/s]q

Next I proved that it is primitive recursive. This proof is very difficult. The
problem is again with the need to rebind bound variables. Normally one would
attempt to create this primitive recursive function by using course-of-values re-
cursion. Course-of-values recursion requires all recursive calls have a smaller code
than the original call. Renaming a bound variable requires two recursive calls.
Recall the definition of substitution in this case:

(∀xj .ϕ)[xi/s]
def= ∀xk.(ϕ[xj/xk])[xi/s] where k 6= i andxk is not free inϕ or s

If one is lucky one might be able to make the inner recursive call. But there is
no reason to suspect the input to the second recursive call, ϕ[xj/xk], is going
to have a smaller code than the original input, ∀xj .ϕ.

If I had used the alternative definition of substitution, where all variables
are substituted simultaneously, there would still be problems. The input would
include a list of variable and term pairs. In this case a new pair would be added
to the list when making the recursive call, so the input to the recursive call could
still have a larger code than the input to the original call.

It seems that using course-of-values recursion is difficult or impossible. In-
stead I introduce the notion of the trace of the computation of substitution.
Think of the trace of computation as a finite tree where the nodes contain the



input and output of each recursive call. The subtrees of a node are the traces
of the computation of the recursive calls. This tree can be coded as a number.
I proved that there is a primitive recursive function that can check to see if a
number represents a trace of the computation of substitution.

The key to solving this problem is to create a primitive recursive function
that computes a bound on how large the code of the trace of computation can
be for a given input. With this I created another primitive recursive function
that searches for the trace of computation up to this bound. Once the trace is
found—I proved that it must be found—the function extracts the result from
the trace and returns it.

5.2 checkPrf is Primitive Recursive

Given a code for a formula and a code for a proof, the function checkPrf returns
0 if the proof does not prove the formula, otherwise it returns one plus the code of
the list of axioms used in the proof. I proved this function is primitive recursive,
as well as proving that it is correct in the sense that for every proof p of ϕ
from a list of axioms Γ , checkPrf(pϕq, ppq) = 1 + pΓq; and for all n,m : N if
checkPrf(n,m) 6= 0 then there exists ϕ, Γ , and some proof p of ϕ from Γ such
that pϕq = n and ppq = m.

For any axiom system U expressible in T , I created the formulas codeSysPrf
and codeSysPf. codeSysPrf[x0/pnq,x1/pmq] is provable in T if m is the code
of a proof in U of a formula coded by n. codeSysPf[x0/pnq] is provable in T if
there exists a proof in U of a formula coded by n.

codeSysPrf and codeSysPf are not derived from a primitive recursive func-
tions because I wanted to prove the incompleteness of axiom systems that may
not have a primitive recursive characteristic function.

6 Fixed Point Theorem and Rosser’s Incompleteness
Theorem

The fixed point theorem states that for every formula ϕ there is some formula
ψ such that

NN ` ψ ⇔ ϕ[xi/pψq]

and that the free variables of ψ are that of ϕ less xi.
The fixed point theorem allows one to create “self-referential sentences”. I

used this to create Rosser’s sentence which states that for every code of a proof
of itself, there is a smaller code of a proof of its negation. The proof of Rosser’s
incompleteness theorem requires doing a bounded search for a proof, and this
requires knowing what is and what is not a proof in the system. For this reason,
I require the decidability of the axiom system. Without a decision procedure for
the axiom system, I cannot constructively do the search.



6.1 Incompleteness of PA

To demonstrate the incompleteness theorem I used it to prove the incompleteness
of PA. I created a primitive recursive predicate for the codes of the axioms of
PA. Coq is sufficiently powerful to prove the consistency of PA by proving that
the natural numbers model PA.

One subtle point is that Coq’s logic is constructive while the internal logic
is classical. One cannot interpret a formula of the internal logic directly in Coq
and expect it to be provable if it is provable in the internal logic. Instead I use a
double negation translation of the formulas. The translated formula will always
hold if it holds in the internal logic.

The consistency of PA along with the expressibility of its axioms and the
translations of proofs from NN to PA allowed me to apply Rosser’s incomplete-
ness theorem and prove the incompleteness of PA—there exists a sentence ϕ
such that neither PA ` ϕ nor PA ` ¬ϕ.

Theorem PAIncomplete :
exists f : Formula,
(forall v : nat, ~ In v (freeVarFormula LNT f)) /\
~ (SysPrf PA f \/ SysPrf PA (notH f)).

7 Remarks

7.1 Extracting the Sentence

Because my proof is constructive, it is possible, in principle, to compute this
sentence that makes PA incomplete. This was not done for two reasons. The
first reason is that the existential statement lives in Coq’s Prop universe, and
Coq’s only extracts from its Set universe. This was an error on my part. I should
have used Coq’s Set existential quantifier; this problem would be fairly easy to
fix. The second reason is that the sentence contains a closed term of the code
of most of itself. I believe this code is a very large number and it is written in
unary notation. This would likely make the sentence far to large to be actually
printed.

7.2 Robinson’s System Q

The proof of essential incompleteness is usually carried out for Robinson’s system
Q. Instead I followed Hodel’s development [10] and used NN. Q is PA with the
induction schema replaced with ∀x0.∃x1.(x0 = 0 ∨ x0 = Sx1). All of NN
axioms are Π1 whereas Q has the above Π2 axiom. Both axiom systems are
finite.

Neither system is strictly weaker than the other, so it would not be possible
to use the essential incompleteness of one to get the essential incompleteness of
the other; however both NN and Q are sufficiently powerful to prove a small
number of needed lemmas, and afterward only these lemmas are used. If one
abstracts my proof at these lemmas, it would then be easy to prove the essential
incompleteness of both Q and NN.



7.3 Comparisons with Shankar’s 1986 Proof

It is worth noting the differences between this formalization of the incompleteness
theorem and Shankar’s 1986 proof in the Boyer-Moore theorem prover. The most
notable difference is the proof systems. In Coq the user is expected to input the
proof, in the form of a proof script, and Coq will check the correctness of the
proof. In the Boyer-Moore theorem prover the user states a series of lemmas and
the system generates the proofs. However, using the Boyer-Moore proof system
requires feeding it a “well-chosen sequence of lemmas” [11, p. xii], so it would
seem the information being fed into the two systems is similar.

There are some notable semantic differences between Shankar’s statement
of incompleteness and mine. His theorem only states that finite extensions of
Z2, hereditarily finite set theory, are incomplete, whereas my theorem states
that even infinite extensions of NN are incomplete as long as they are self-
representable. Also Shankar’s internal logic allows axioms to define new relation
or function symbols as long as they come with the required proofs of admissibil-
ity. Such extensions are conservative over Z2, but no computer verified proof of
this fact is given. My internal logic does not allow new symbols. Finally, I prove
the essential incompleteness of NN, which is in the language of arithmetic. With-
out any set structures the proof is somewhat more difficult because it requires
using Gödel’s β-function.

One of Shankar’s goals when creating his proof was to use a proof system
without modifications. Unfortunately he was not able to meet that goal; he ended
up making some improvements to the Boyer-Moore theorem prover. My proof
was developed in Coq without any modifications.

7.4 Gödel’s Second Incompleteness Theorem

The second incompleteness theorem states that if T is a recursive system ex-
tending PA—actually a weaker system could be used here—and T ` ConT then
T is inconsistent. ConT is some reasonable formula stating the consistency of T ,
such as ¬PrT (p0 = S0q), where PrT is the provability predicate codeSysPf for
T .

If I had created a formal proof in PA, I would have
`PA “Gödel’s first incompleteness theorem”. This could then be me-
chanically transformed to create another formal proof in PA that
`PA (PA ` “Gödel’s first incompleteness theorem”). The reader can verify
that the second incompleteness theorem follows from this. Unfortunately I
have only shown that `Coq “Gödel’s first incompleteness theorem”, so the
above argument cannot be used to create a proof of the second incompleteness
theorem.

Still, this work can be used as a basis for formalizing the second incom-
pleteness theorem. The approach would be to formalize the Hilbert-Bernays-Löb
derivability conditions:

1. if PA ` ϕ then PA ` PrPA(pϕq)



2. PA ` PrPA(pϕq) ⇒ PrPA(pPrPA(pϕq)q)
3. PA ` PrPA(pϕ ⇒ ψq) ⇒ PrPA(pϕq) ⇒ PrPA(pψq)

The second condition is the most difficult to prove. It is usually proved by first
proving that for every Σ1 sentence ϕ, PA ` ϕ ⇒ PrPA(pϕq). Because I made
sure that all primitive recursive functions are representable by a Σ1 formula,
it would be easy to go from this theorem to the second Hilbert-Bernays-Löb
condition.

8 Statistics

My proof, excluding standard libraries and the library for Pocklington’s criterion
[2], consists of 46 source files, 7 036 lines of specifications, 37 906 lines of proof,
and 1 267 747 total characters. The size of the gzipped tarball (gzip -9) of all
the source files is 146 008 bytes, which is an estimate of the information content
of my proof.
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