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Chapter 1

Introduction

In the late nineteenth and early twentieth century, formal systems for mathemat-
ical reasoning were developed by pioneers such as Frege [Frege, 1879], Russell, and
Whitehead [Whitehead and Russell, 1925]. In principle all mathematical arguments
could be written in some formal system and verifying the validity of these proofs
would be a simple, but tedious, syntactic check. No person would want to engage
in such a task, but modern computers excel at quickly performing simple, tedious
tasks. Automated proof checkers have been developed that can quickly verify the
validity of mathematical arguments that are written in their formal systems.

Proof checkers are an ideal way of verifying mathematical arguments because they
are fast and reliable. What remains difficult is converting standard mathematical
arguments on paper into a formal language that is suitable for software verification.
In a formal proof, no details of an argument can be omitted.

To aid people in the composition of formalized mathematics, proof assistants have
been developed. These proof assistants contain an automated proof checker in the
kernel of their code. The rest of the software supports the interactive development
of formal proofs. They manage what goals remain to be proven and which assump-
tions are available to prove those goals. They provide tools for automatically
solving or reducing certain goals. However, even with all this assistance, creating
formal proofs is a difficult and time consuming task for all but the simplest mathe-
matical arguments. In this thesis I will develop some new tools that will lift some
of this burden.

1.1 Main Topics and Contributions

This thesis is divided into two parts. In Part I, I discuss my development and veri-
fication of the Gödel-Rosser incompleteness theorem, which I undertook in order to
better understand the difficulties of creating formal proofs. This new formal proof
is more general than the previous formal proof of the incompleteness the-
orem [Shankar, 1994]. In Part II, using lessons learned about formalization from
Part I, I develop a constructive theory of real numbers. This formalization extends
previous work on constructive real analysis [Cruz-Filipe, 2004] by adding feasible
evaluation of approximations of elementary real number expressions. The two parts
are independent of each other and can be read separately. The theorems in this
thesis have been developed and verified with the Coq proof assistant [The Coq
Development Team, 2004].
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1.1.1 Part I

I chose to verify the Gödel-Rosser incompleteness theorem because the proof is
simple enough that it is covered in undergraduate mathematics courses, and I felt it
was an extreme example of a mathematical proof whose details are omitted during
its presentation. I tried to follow a traditional mathematical argument, and I
mostly succeeded, but I learned that many of the traditional structures and argu-
ments for this proof are difficult to encode in a formal proof. I have identified sev-
eral aspects of the proof where non-traditional structures and arguments may be
easier to use. Another lesson I learned is that one should spend time researching
and thinking about how to simplify aspects of a proof before formalizing it. This
pressure to invent more general data structures and proofs is a useful side effect of
the formalization process.

1.1.2 Part II

In Part II, I develop a new approach to metric spaces. I define the completion of an
arbitrary metric space, and I give detailed paper proofs of properties of my metric
spaces. The paper proofs were written before formalization so that I could antici-
pate difficulties and adjust definitions. I then develop the real numbers as the ana-
lytic completion of the rationals and define common trigonometric operations on
them. Because my data structures and functions have reasonable efficiency, the
operations are feasible to execute. Formal proofs ensure that the operations are
correct.

The primary purpose of developing a completion operation for metric spaces was to
create an efficient real number implementation. However, the resulting completion
operation is generic and can be used to complete other metric spaces. To illustrate
this, I develop two other complete metric spaces: the completion of rational step
functions, yielding integrable functions, and the completion of finite sets, yielding
the compact sets.

The library I have developed could be used to create a scientific calculator that can
evaluate real number expressions to arbitrary precision and guarantee that the
results are correct. Furthermore, by using the theory of compact sets, one could
create a graphing calculator with provably correct plots of functions. Because the
computations are certified with formal proofs, the computations can be used inside
proofs.

Using computation inside proofs is a powerful technique. The proof of the four
colour theorem [Apple and Haken, 1976] and Kepler’s conjecture [Hales, 2002] both
make heavy use of computation in their proofs. Verified computation is an essential
ingredient needed to formalize these proofs. Gonthier has successfully used this
technique to verify the four colour theorem with the Coq proof assistant [Gonthier,
2005]. I believe that my theory of real numbers provides the tools needed to verify
Hales’s proof of the Kepler conjecture as well as other proofs that make use of real
number computation, such as the disproof of Mertens conjecture [Odlyzko and
teRiele, 1985]. More importantly, I believe the ideas in this part will prove useful
for creating the next generation of effective implementations of constructive anal-
ysis.
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Chapter 2

Preliminaries

Constructive logic is usually presented as a restriction of classical logic where proof
by contradiction and the law of the excluded middle are not allowed. However, con-
structive logic can also be presented as an extension of classical logic.

Consider formulas constructed from universal quantification (∀), implication (⇒),
conjunction (∧ ), true (⊤), false (⊥), and equality for natural numbers (=N ).
Define negation using these primitives.

Definition 2.1. ¬ϕ4 ϕ⇒⊥.

We call a formula ϕ stable when ¬¬ϕ⇒ ϕ holds. One can (constructively) prove ϕ
is stable for any formula ϕ generated from this set of connectives by induction on
the structure of ϕ because m =N n is provably stable, and the connectives listed
above preserve stability. Thus, one can deduce classical results with constructive
proofs for formulas generated from this restricted set of connectives.

This set of connectives is not really restrictive though; it can be used to define the
other classical connectives.

Definition 2.2. Classical connectives:

ϕ ∨̃ ψ 4 ¬(¬ϕ∧¬ψ)

∃̃x.ϕ(x) 4 ¬(∀x.¬ϕ(x)).

With this full set of connectives, one can produce classical mathematics. The law of
the excluded middle (ϕ ∨̃ ¬ϕ) has a constructive proof when the classical disjunc-
tion is used. As long as we have a stable goal we can do case analysis on the clas-
sical disjunction.

Theorem 2.3. Assuming that ϕ ∨̃ ψ holds, we have ϕ ⇒ θ and ψ ⇒ θ, and θ is
stable, meaning ¬¬θ⇒ θ, then θ holds.

Proof. Because θ is stable, it is sufficient to prove that ¬¬θ holds. Assume that
¬θ holds. From this and the contrapositive of ϕ ⇒ θ we can conclude that ¬ϕ
holds. Similarly ¬ψ holds. But we have that ¬(¬ϕ ∧ ¬ψ) holds from the definition
of ϕ ∨̃ ψ. Thus we have a contradiction, as required. �
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We have a similar theorem for the classical existential.

Theorem 2.4. Assuming that ∃̃x. ϕ(x) holds, we have ∀x. ϕ(x) ⇒ θ, and θ is
stable, meaning ¬¬θ⇒ θ, then θ holds.

Proof. Because θ is stable, it is sufficient to prove that ¬¬θ holds. Assume that
¬θ holds. From this and the contrapositive of ϕ(x) ⇒ θ we can conclude that
∀x.¬ϕ(x) holds. But we have that ¬(∀x.¬ϕ(x)) holds from the definition of
∃̃x.ϕ(x). Thus we have a contradiction, as required. �

So far, these two theorems can always be used because for any given formula θ, we
can prove ¬¬θ⇒ θ.

Now let us extend this logic by adding two new connectives, the constructive dis-
junction (∨ ) and the constructive existential (∃). These new connectives come
equipped with their constructive rules of inference given by natural deduc-
tion [Thompson, 1991]. These constructive connectives are slightly stronger than
their classical counterparts. Constructive excluded middle (ϕ ∨ ¬ϕ) cannot be
deduced in general, and our inductive argument that ¬¬ϕ⇒ ϕ holds no longer goes
through if ϕ uses these constructive connectives. Therefore, statements such as
(¬ϕ⇒¬ψ)⇒ (ψ⇒ ϕ) are not general tautologies in constructive logic, but one can
prove such statements when ϕ is a stable formula.

We wish to use constructive reasoning because constructive proofs have a computa-
tional interpretation. A constructive proof of ϕ ∨ ψ tells which of the two disjuncts
hold. A proof of ∃n: N. ϕ(n) gives an explicit value for n that makes ϕ(n) hold.
Most importantly, we have a functional interpretation of ⇒ and ∀. A proof of
∀n: N.∃m: N. ϕ(n, m) is interpreted as a function with an argument n that returns
an m paired with a proof of ϕ(n,m).

The classical fragment also admits this functional interpretation, but formulas in
the classical fragment typically end in � ⇒ ⊥. These functions take their argu-
ments and return a proof of false. Of course, there is no proof of false, so it must
be the case that the arguments cannot simultaneously be satisfied. Therefore, these
functions can never be executed. It turns out that only trivial functions such as
this are created by proofs of classical formulas. This is why constructive mathe-
matics aims to strengthen classical results. We wish to create proofs with non-
trivial functional interpretations.

Constructive logic turns out to be compatible with classical logic. If one replaces
the constructive existential and disjunction with their classical counterparts, then
the resulting formula is a theorem if the original theorem was. In fact, the deduc-
tive rules of constructive logic are a subset of the deductive rules of classical logic
when connectives are reinterpreted this way. This means that constructive rea-
soning can be understood by classical mathematicians, although classical mathe-
maticians may find some of the reasoning unusual at times because they have a dif-
ferent interpretation of the connectives.
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Constructive mathematics is mathematics done with constructive logic. Some care
needs to be taken when selecting the non-logical axioms to ensure that the compu-
tational interpretation of the logic remains valid. Standard ZFC set theory used in
mathematics implicitly assumes a classical logic, so it is not a useful choice; one
would be essentially restricted to the classical portion of constructive logic. I will
use a type theory called the calculus of (co)inductive constructions (CiC) [The Coq
Development Team, 2004] as the mathematical foundation for this thesis. CiC adds
inductive and coinductive data structures, such as natural numbers, lists, and
streams, to constructive logic in a way that is compatible with the existing natural
deduction style rules for constructive logic. In fact, most of the logical connectives
are defined as inductive datatypes. Only (∀) remains primitive and (⇒) is defined
as a special case of (∀) (see Section 2.2.2).

CiC is the foundation used by the Coq proof assistant, which is the system that I
have used to verify the theorems in my thesis. I will attempt to present my work
independent of any particular constructive foundation as much as possible so that
the ideas can easily be transferred to other systems. However, I will make use of
the notation from type theory in my presentation.

From now on, I will generally leave out the word “constructive” from phrases
like “constructive disjunction” and “constructive existential” and simply write “dis-
junction” and “existential”. This follows the standard practice in constructive math-
ematics of using names from classical mathematics to refer to some stronger con-
structive notion. I will explicitly use the word “classical” when I wish to refer to
classical concepts. Rather than saying a statement is true in constructive logic,
which suggests a true/false dichotomy, I will say a statement holds or is proved . I
may also say a statement is constructed , but I will usually reserve this term for
constructive theorems outside the classical subset.

2.1 Dependently Typed Functional Programming

This computational interpretation of constructive deductions is given by the Curry-
Howard isomorphism [Thompson, 1991]. This isomorphism associates formulas with
dependent types, and proofs of formulas with functional programs of the associated
dependent types. For example, the identity function λx: A.x of type A⇒ A repre-
sents a proof of the tautology A⇒A. Table 2.1 lists the association between logical
connectives and type constructors.

Logical Connective Type Constructor

implication: ⇒ function type: ⇒
conjunction: ∧ product type: ×
disjunction: ∨ disjoint union type: +

true: ⊤ unit type: ()

false: ⊥ void type: ∅
for all: ∀x.ϕ(x) dependent function type: Πx.ϕ(x)

exists: ∃x.ϕ(x) dependent pair type: Σx.ϕ(x)

Table 2.1. The association between formulas and types given by the Curry-Howard iso-
morphism.
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In dependent type theory, functions from values to types are allowed. Using types
parametrized by values, one can create dependent pair types, Σx: A. ϕ(x), and
dependent function types, Πx: A.ϕ(x). A dependent pair consists of a value x of
type A and a value of type ϕ(x). The type of the second value depends on the first
value, x. A dependent function is a function from the type A to the type ϕ(x). The
type of the result depends on the value of the input.

The logical connectives and the type constructors from Table 2.1 mean the same
thing, and I will use them interchangeably; however, I will usually prefer to use the
logical connectives. Note that Coq has a sort of distinction between the two classes
of connectives (see Section 2.3.2).

The association between logical connectives and types can be carried over to con-
structive mathematics. We associate mathematical structures, such as the natural
numbers, with inductive types in functional programming languages. We associate
atomic formulas with functions returning types. For example, we can define
equality on the natural numbers, x=N y, as a recursive function:

0 =N 0 4 ⊤
S(x)=N 0 4 ⊥
0 =N S(y) 4 ⊥

S(x) =N S(y) 4 x=N y

One catch is that general recursion is not allowed when creating functions. The
problem is that general recursion allows one to create a fixed point operator fix :
(ϕ⇒ ϕ)⇒ ϕ that corresponds to a proof of a logical inconsistency. To prevent this,
we allow only well-founded recursion over an argument with an inductive type.
Because well-founded recursion ensures that functions always terminate, the lan-
guage is not Turing complete. However, one can still express fast-growing func-
tions, such as the Ackermann function, without difficulty by using higher-order
functions [Thompson, 1991].

Because proofs and programs are written in the same language, we can freely mix
the two. For example, I will represent the real numbers (see Definition 9.16 and
Definition 11.1) by the type

∃f :Q+⇒Q.∀ε1 ε2.|f(ε1)− f(ε2)| ≤ ε1 + ε2. (2.1)

A value of this type is a pair of a function f : Q+ ⇒ Q and a proof of
∀ε1 ε2. |f(ε1) − f(ε2)| ≤ ε1 + ε2. The idea is that a real number is represented by a
function f that maps any requested precision ε: Q+ to a rational approximation of
the real number. Not every function of type Q+ ⇒ Q represents a real number.
Only those functions that have coherent approximations should be allowed. The
proof object paired with f witnesses the fact that f has coherent approximations.
This is one example of how mixing functions and formulas allows one to create pre-
cise datatypes.
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2.1.1 Evaluation

This computational interpretation of constructive mathematics is more than a nice
theoretical feature. The algorithms contained inside constructive proofs can actu-
ally be executed inside the type theory. One can view this as part of Bishop’s pro-
gram to see constructive mathematics as a programming language. For example,
the expression 2 + 2 and the expression 4 are considered equivalent. They can be
substituted for each other in any context, and the system will evaluate (2 + 2) to 4
when necessary.

A technique called reflection [Barendregt and Geuvers, 2001] uses this evaluation
mechanism to allow one to create proofs by using computation. One example of
this technique is used in Section 11.4.2 to prove the correctness of my definition of
π. Thus the computational and logical parts of type theory enhance each other.
Correct algorithms can be used to create proofs, and proofs verify the logical cor-
rectness of algorithms.

2.1.2 Formalizing Mathematics with a Computer

There are several different approaches to formalizing mathematics on a com-
puter [Wiedijk, 2006]. Often people use a system that provides classical logic.
Many systems implement classical higher-order logic, such as HOL Light,
Isabelle/HOL, and PVS. A few systems implement classical set theory, such as
Mizar and Isabelle/ZF.

One of the main benefits of formalizing mathematics with a computer, aside from
providing high assurance of correctness, is the ability for the computer to automate
reasoning that would be too tedious to formalize by hand. This automated rea-
soning can range from the mundane, automatically differentiating an expression, to
the extreme, the huge case analysis needed in the four colour theorem [Gonthier,
2005].

Systems based on classical logic must perform this computation outside the logic,
whereas a constructive system, such as Coq, can perform computation both on the
outside, as Coq does with its tactic system, and on the inside, as Coq does with its
evaluation mechanism.

To prove the correctness of an algorithm using a classical system, generally one
writes out the function first. Once the function is defined, one can use classical rea-
soning to prove properties about that function. In a constructive system, one has
the option to mix proofs into the definition of the function. This allows one to
prove properties of a function as the function is defined. However, one still has the
option of writing the function first and then reasoning about it.

One can see the classical approach to correctness as taking a constructive theorem
and Skolemizing the constructive existentials (and constructive disjunctions). The
functions one initially writes become the instances of the Skolem functions in the
transformed theorem. The resulting theorem is in the classical fragment of con-
structive logic and classical arguments can be used to prove it.

2.1 Dependently Typed Functional Programming 7



I do not believe that there is anything to be gained by forcing a separation between
the (classical) logical aspects and the algorithmic aspects when proving properties
of algorithms. Sometimes this separation is a useful way to proceed, but usually
the “flow” of the proof follows the “flow” of data in the algorithm. It makes sense to
attach proof objects to values inside the algorithm, particularly when one wants to
express an invariant of a datatype. I feel working with data and proofs together
clarifies the development of algorithms and makes proving properties easier. Some-
times one wants to prove a property of how two or more functions interact; for
example, when proving one function distributes over another. In this case, it is usu-
ally best to provide a proof separate from either function.

When working in a constructive system, one has the option to avoid algorithmic
development entirely and simply write a constructive proof. By its constructive
nature, this proof can be executed to compute constructive witnesses. However, if
no attention is paid to the construction, the resulting algorithms are often ineffi-
cient. Therefore, it is wise to think of creating a constructive proof as a program-
ming task as well as a mathematical task. One should take the same algorithmic
considerations into account that one would when writing any other functional pro-
gram.

2.2 A Brief Introduction to Type Theory

Types in type theory are similar to sets in set theory in that they are a collection
of values. One important difference between type theory and set theory is that in
type theory every value belongs to a unique type. I write a : A when a value a

belongs to a type A. This means that the natural number 1N : N is distinct from
the rational number 1Q : Q because they belong to different types. However, I will
often just write 1 and leave the distinction implicit. Values are also called “objects”;
the two terms are synonymous.

Quantifiers always range over some type; for example, ∀x:N.x= 0∨ ∃y:N.x= S(y).
Sometimes I will omit writing the type for the quantified variable when it is clear
from context.

One can form new types from existing types. Given types A and B, one can create
the disjoint union type, A+B, the Cartesian product type, A ×B, and the type of
functions from A to B, A⇒ B. These types are the same as the logical connectives
(∨), (∧), and (⇒) respectively. The functions π1: A × B ⇒ A and π2: A × B ⇒ B

are the first and second projection functions of the Cartesian product type.

In type theory, proofs are objects, and propositions are types. This is known as the
propositions-as-types interpretation. Propositions are types whose objects consist of
all of their proofs. Therefore, one writes p : ϕ when p is a proof of ϕ. When a
proposition has no proofs, it has no members. Thus it is the inhabited propositions
that are the valid propositions. Propositions are also values that belong to the type
of propositions. In Coq, the type of propositions is called Prop (see Section 2.3.2);
however I will denote this type as ⋆ and write ϕ: ⋆. Predicates can be seen as func-
tions whose codomains are propositions. For example, predicates over the natural
numbers will have the type N⇒ ⋆.
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2.2.1 Inductive types

CiC has inductive and coinductive types, so standard inductive types such as
Booleans, natural numbers, integers, lists, binary trees, etc. are available as well as
coinductive types such as infinite streams. I will use standard mathematical nota-
tion for such types.

A record is an inductive data type that has only one constructor. Coq has special
notation for defining records that allows one to create the inductive type and the
projection functions for its fields at the same time.

A value of an inductive data type can be consumed by a structurally recursive
function. These recursive functions can be evaluated inside type theory as men-
tioned in Section 2.1.1.

In addition to inductive types, inductive type families (also called inductive predi-
cates) can be defined. In this case, the inductive definition produces not a type but
a predicate. See Section 4.4 for an example of an inductively defined type family.

2.2.2 Constructive Functions

In classical mathematics, a classical function is a type of binary relation F satis-
fying the property

(∀x.∃̃y.F (x, y))∧ (∀xyz.F (x, y)∧F (x, z)⇒ y= z).

In constructive mathematics, a (constructive) function is a value of type A ⇒ B,
where ⇒ is a primitive connective. This ⇒ connective used in the function type is
identical to the implication logical connective. In type theory, values of this con-
structive function type are formed by specifying how the output is constructed
from the input, usually using a lambda expression (see Section 2.2.4). Constructive
functions can be evaluated internally in type theory as mentioned in Section 2.1.1.

Additionally there is the dependent function type, written ∀a: A.B(a), which is
identical to the universal quantifier. In this case the codomain of the function can
depend on the input parameter. Like the regular function type, values of a depen-
dent function type are specified by lambda expressions and can be evaluated inter-
nally in type theory. In fact, A⇒ B is simply notation for ∀a: A.B where B does
not depend on a.

2.2.3 Curried Functions

A multi-argument function in mathematics is typically represented as a function
whose domain is a Cartesian product. For example, a binary function would have
the type A × B ⇒ C. It is traditional in functional programming to use curried
functions. A curried binary function has type A⇒ B⇒ C (meaning A⇒ (B ⇒ C)
by the usual associativity rule for ⇒), which can easily be shown to be isomorphic
to A × B ⇒ C. When applying a curried binary function it would be more techni-
cally accurate to write f(a)(b), but for clarity I will sometimes write f(a, b) as if
the function were not curried.
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2.2.4 Anonymous Functions

I will on occasion use anonymous functions. Anonymous functions—common in
functional programming—are declared using the λ symbol. For example, the recip-
rocal function can be written as λx.x−1 and can be applied to arguments, as in
(

λx.x−1
)

(

2

3

)

is equal to 3

2
.

2.2.5 Extensional Equality

In this thesis I will use the equality sign (=) for extensional equality . Two func-
tions f , g of the same type are considered extensionally equal when, for any input
given to both functions, the outputs of the functions are extensionally equal:

f = g4 ∀a.f(a)= g(a)

Two values of an inductive type are extensionally equal when their constructors are
the same and all parameters are extensionally equal.

Extensional equality is the finest equality we will need in my thesis. However, Coq
uses a finer equality called intensional equality (see Section 2.3.1) for its funda-
mental equality.

Another sort of equality that we will frequently use is setoid equality (see Sec-
tion 2.2.8), which is generally coarser than extensional equality.

2.2.6 No Subtypes

Coq does not have subtyping.2.1 This means that Z cannot be considered as a sub-
type of Q. Functions, usually injections, are instead used to change data from one
type to the other type. Coq has a coercion mechanism that will automatically infer
many of these injections and hide the injections from being printed. Defining a
coercion from Z to Q allows one to use values of Z as if they were values of Q.

2.2.7 Predicates Instead of Sets

Sets do not exist as such in type theory. Usually sets are replaced by predicates
over a particular type. For example, subsets of the natural numbers are identified
with N ⇒ ⋆, predicates on the natural numbers. A value x satisfies a predicate P
when P (x) is an inhabited type. Often I will use set theoretic notation to denote
membership of a predicate:

x∈P 4 P (x)

∀x∈P .ϕ 4 ∀x.P (x)⇒ ϕ

∃x∈P .ϕ 4 ∃x.P (x)∧ ϕ
Similar quantifier notation will be used for inequalities such as ∀i < n. ϕ and
∃i≥n.ϕ.

2.1. Technically, Coq has subtyping in its universe levels, but we will not concern ourselves with
universe levels in this thesis.
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2.2.8 Setoids Instead of Quotients

A quotient type is a type modulo a given equivalence relation on that type. For
instance, the type Q is often considered as a quotient of the type Z × N+. CiC
does not have quotient types. One instead passes around the equivalence relation in
question. To do this, one often uses a data structure called a setoid. A setoid
(A, ≍A ) is a type paired with an equivalence relation on that type. Functions
between setoids that preserve their equivalence relations are called respectful .
Proving that a function is respectful consists of the same work in traditional math-
ematics needed to prove that a function over quotients is well-defined. Respectful
functions are also called morphisms .

2.2.8.1 Rewrite Automation

Coq has special support for reasoning about setoids through its setoid_rewrite

and setoid_replace tactics [Coen, 2004]. These tactics will automatically create
the deductions for substitution of setoid equivalent terms into respectful functions
and relations. This support makes reasoning about setoid equivalence almost as
easy as reasoning about equality in Coq.

Furthermore, Coq has the ability to define a database of rewrite lemmas. These
lemmas have terms of the form a ≍A b for their conclusions. When they are added
to the database the user indicates which way substitution should be performed (the
same lemma can be added to different databases with different directions). The
user can then use the database as a rewrite system to process a hypothesis or goal.
The autorewrite <database> tactic will repeatedly try to use the lemmas in the
named database to rewrite the goal. Well crafted rewrite databases can be used to
quickly transform or simplify expressions.

2.2.9 Apartness Instead of “Not Equal”

In analysis, when considering Hausdorff spaces, it is often the case that being “not
equal” is a non-stable atomic formula [Bauer and Taylor, 2008]. However, x � y is
notation for ¬x = y, and it is always stable. Therefore, constructive analysis uses a
relation called apartness , written x#y, which is not necessarily stable. For
example, the apartness relation for real numbers, x#y4 x < y ∨ y < x, is not prov-
ably stable. In these cases a c-setoid (a constructive setoid) data structure is often
used instead of a setoid. A c-setoid (A,#A) is a type paired with an apartness rela-
tion. In this case, a respectful function from a c-setoid A to a c-setoid B, is a func-
tion f :A⇒B such that ∀x, y:A.f(x)#Bf(y)⇒x#Ay.

2.2.10 Classical Propositions Have One Proof

All classical propositions have at most one proof, meaning that if p : ϕ and q: ϕ are
two proof objects of the same classical proposition ϕ, then we can prove that p and
q are (extensionally) equal, p = q. In general, I will denote all the unique proofs of
classical propositions as ∗ (e.g. ∗:⊤ and ∗:⊥⇒ ϕ).
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2.2.11 Omitted Parameters

Throughout this thesis there are many places where I formally need to provide
proofs of propositions as arguments to functions. However, to allow for a clearer
presentation, I will usually omit these parameters. For example, the logarithm on
rational numbers, lnQ(a), requires a proof object showing that 0<Q a, but I do not
show this parameter (see Section 11.4).

2.3 Coq Specific Issues

The previous section detailed the properties of the type theory I will be informally
working in for this thesis. Although I made reference to the Coq system at times,
the type theory I describe is fairly generic and should be easily adapted to work in
many different implementations of type theory. However, my formal work has been
done in the Coq proof assistant, so below I address some specific properties of Coq
that are relevant to my formalization.

2.3.1 Intensional Equality

In type theory, functions are represented by the program that does the computa-
tion. In Coq, two functions can only be proven equal if after normalization they are
the same program. This means that if two functions are extensionally equal, they
may not be intensionally equal in Coq.

For inductive data types without functions as parameters to constructors, inten-
sional equality coincides with extensional equality, so much of the time this distinc-
tion does not matter. On those occasions where I need to deal with extensional
equality between functions in Coq, I can often just expand out the definition of
extensional equality. Thus, rather than trying to prove f = g, I prove ∀a.
f(a)= g(a) instead.

2.3.2 Prop versus Set

The Coq system has a special universe called Prop. The Prop universe is like ⋆ in
that it has types as members. The regular type universe is called Set and also has
types as members, like ⋆ .2.2 These two universes behave largely the same. Both
universes have inductive types and function/implication types. When defining an
inductive type, one specifies which universe the inductive type will inhabit. Func-
tions in both universes can be evaluated inside Coq, as long as the functions are
not opaque (see Section 2.3.3).

2.2. There is also an infinite number of universe levels containing Set and Prop, but we can safely
ignore this for our needs.
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Generally the two universes serve to divide up types that are otherwise identical
according to whether their values are intended to play a logical or functional role
(recall Table 2.1). For each entry in Table 2.1, Coq has at least two operators, one
for the logical side and one for the functional side. For example, Coq has one pro-
duct for logical conjunction and another product for product types. Inductive types
for both universes can have parameters whose types belong to either universe. In
this way types from both universes can be mixed together. The only major differ-
ence between the Prop and Set universes is in the way that case analysis for induc-
tive types behave. Case analysis on an inductive type from the Prop universe is not
allowed to result in a value in the Set universe. This prevents information from
flowing from the Prop universe to the Set universe. This restriction allows Coq to
optimize program extraction by throwing away all values from the Prop universe
during program extraction [Paulin-Mohring, 1989]. This is safe because the case
analysis restriction means that no value from the Set universe can depend on
choices made in the Prop universe.

There is an important exception to this case analysis rule. For the special case of
inductive types declared in the Prop universe that have at most one constructor
whose parameters are all from the Prop universe, case analysis is allowed to return
values in the Set universe. Case analysis is safe in this instance because inductive
types with at most one constructor provide no information; There will be only one
branch in the case analysis. During program extraction, the case analysis is simply
replaced by the code of this one branch. Since all the parameters are from the Prop

universe, no parameters from the case analysis will occur in the code extracted
from the one branch.

Generally I only put inductive types in the Prop universe if they satisfy this special
condition.2.3 This allows me to enjoy unrestricted case analysis and still allow for
efficient program extraction.

I will not be making a Prop/Set distinction in my general discussion; however, I
may refer to it when making comments specifically about the Coq implementation.

2.3.3 Opaque Objects

Theorems and definitions can be marked as opaque in Coq. Opaque definitions
cannot be unfolded during computation. In this sense they behave much like
axioms in Coq. Generally I make all objects in the Prop universe opaque and leave
all objects in the Set universe as transparent. This usually works well because I
ensure that all my objects from the Prop universe have no information (see Sec-
tion 2.3.2).

2.3. There are some cases when I would put inductive type families in Prop, even if they have mul-
tiple constructors. However, all inductive type families in this thesis will be put in the Set uni-
verse.

2.3 Coq Specific Issues 13



One notable exception to making all Prop objects opaque would be a proof that a
relation is well-founded. Even though the accessibility predicate is in the Prop uni-
verse and satisfies the one constructor rule given in Section 2.3.2, it generally needs
to be transparent so that well-founded induction over the relation can proceed. The
other notable exception is that proofs of equality occasionally need to be trans-
parent to allow “safe type-casts”2.4 to be evaluated.

Declaring objects as opaque is useful because it can prevent computation from
expanding irrelevant definitions during evaluation. This is so useful that Coq also
has a mechanism to temporarily mark certain definitions as opaque and make them
transparent again later.

2.3.4 Coq Notation

On occasion I will use Coq’s concrete syntax to clearly specify the formal theorems
I have proven. For those not familiar with Coq syntax, here is a short list of nota-
tion.

• ->, /\, \/, and ~ are the logical connectives ⇒, ∧, ∨, and ¬.
• A + B, A * B, and A -> B form disjoint union types, Cartesian product

types, and function types.

• *, +, and S are the arithmetic operations of multiplication, addition, and
successor.

• inl and inr are the left and right injection functions of types A -> A + B

and B -> A + B.

• ::, and ++ are the list operations cons and append.

• _ is an omitted parameter that Coq can infer itself.

Function application is indicated by juxtaposition. Thus f(x) is written simply as
f x in Coq. For more details see the Coq 8.0 reference manual [The Coq Develop-
ment Team, 2004].

2.4. A safe type-cast allows a: A to be transformed into a value of type B when given a proof of
A=B.
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Part I

Incompleteness Theorem





Chapter 3

Introduction

In this part, I discuss my formal proof of the Gödel-Rosser incompleteness theorem
for arithmetic. The proof shows that any complete first-order theory of a suitable
axiom system using only the symbols + , × , 0, S, and < is inconsistent. The
axiom system must contain the nine axioms of a system called NN. These nine
axioms define the five symbols. The axiom system must also be expressible in itself.
This restriction prevents the incompleteness theorem from applying to axioms sys-
tems such as the true first order sentences in N. Finally, the axiom system must be
decidable, so that it is constructively decidable what is and is not a proof. This
restriction is subtly, but significantly, different from requiring the axiom system to
be computable. The difference is discussed later in Section 6.1.

A computer-verified proof of Gödel’s incompleteness theorem is not new. In 1986
Shankar created a proof of the incompleteness of Z2, hereditarily finite set theory,
in the Boyer-Moore theorem prover [Shankar, 1994]. My work is the first computer-
verified proof of the essential incompleteness of arithmetic. Harrison recently com-
pleted a proof in HOL Light [Harrison, 2000] of the essential incompleteness of Σ1-
complete theories, but has not shown that any particular theory is Σ1-complete.

My proof was developed and checked in Coq 7.3.1 using Proof General under
XEmacs. It is part of the user contributions to Coq and can now be checked in
Coq 8.0 [The Coq Development Team, 2004]. Examples of source code in this docu-
ment use the new notation introduced in Coq 8.0.

This part points out some of the more interesting problems I encountered formal-
izing the incompleteness theorem. My proof loosely follows the presentation of
incompleteness given in my undergraduate logic textbook, An Introduction to
Mathematical Logic by Hodel [Hodel, 1995]. I use a more standard Hilbert-style
deduction system rather than the one defined by Hodel. I referred to the supple-
mentary text for the book Logic for Mathematics and Computer Science [Burris,
1997] to construct Gödel’s β-function, and I take some inspiration from Shankar’s
work as described in Metamathematics, Machines, and Gödel’s Proof [Shankar,
1994]. I also use Caprotti and Oostdijk’s contribution of Pocklington’s criterion
[Caprotti and Oostdijk, 2001] to prove the Chinese remainder theorem. My proof is
entirely constructive.
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In this part, I first discuss my formalization of first-order classical logic over an
arbitrary language (Chapter 4). This is followed by the definition of an axiom
system called NN and the axiom system for Peano arithmetic. Then I discuss
coding formulas and proofs as natural numbers followed by a discussion about
primitive recursive functions operating on these codes (Chapter 5). Next I give the
statement of the essential incompleteness of NN (Chapter 6). I discuss the fixed
point theorem, Rosser’s incompleteness theorem, and the incompleteness of Peano
arithmetic. Finally, I give some general remarks about my experience and how to
extend my work in order to formalize Gödel’s second incompleteness theorem
(Chapter 9.5).

This part is an expansion of my publication, “Essential Incompleteness of Arith-
metic Verified by Coq” [O’Connor, 2005a].
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Chapter 4

First-Order Classical Logic

The first step to prove the incompleteness theorem is to develop a theory of first
order logic inside Coq. In essence Coq’s logic is a formal metalogic to reason about
this internal logic. I created inductive types of well-formed terms and formulas
parametrized over a first order language. I then created an inductive definition of
Hilbert-style deductions for classical logic.

I make essential use of Coq’s dependent type system. Terms and Formulas are
types that depend on the language. Also, dependent types are used in the defini-
tion of function and relation symbols so that the type system enforces that all
terms and formulas be well-formed. This approach differs from Harrison’s definition
of first order terms and formulas in HOL Light [Harrison, 1998a] because HOL
Light does not have dependent types.

4.1 Data Structures for Language

I defined Language to be a dependent record of types for symbols and an arity
function from symbols to N. The Coq code is:

Record Language : Type := language

{Relations : Set;

Functions : Set;

arity : Relations + Functions -> nat}.

In retrospect it would have been slightly more convenient to use two arity functions
instead of using the disjoint union type.

The entire development of first-order logic is parametrized over this structure by
using Coq’s section mechanism.

4.2 Data Structures for Term and Formula

For any language, a Term is either a variable indexed by a natural number or a
function symbol plus a list of n terms where n is the arity of the function symbol.
My first attempt at writing this in Coq failed.
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Variable L : Language.

(* Invalid definition *)

Inductive Term0 : Set :=

| var0 : nat -> Term0

| apply0 : forall (f : Functions L) (l : List Term0),

(arity L (inr _ f))=(length l) -> Term0.

Some people may think that the occurrence of the List Term0 type in apply0

causes Coq to reject this definition; however, this is actually not problematic. It is
the type (arity L (inr _ f))=(length l) that fails to meet Coq’s positivity
requirement for inductive types. Expanding the definition of length reveals a
hidden occurrence of Term0 which is passed as an implicit argument to length. It
is this occurrence that violates the positivity requirement.

My second attempt met the positivity requirement, but it had other difficulties.
First, one creates the well-known inductive family of types lists of length n, usually
called Vector.

Inductive Vector (A : Set) : nat -> Set :=

| Vnil : Vector A 0

| Vcons : forall (a : A) (n : nat),

Vector A n -> Vector A (S n).

Using this I could have defined Term as follows.

Variable L : Language.

Inductive Term1 : Set :=

| var1 : nat -> Term1

| apply1 : forall f : Functions L,

(Vector Term1 (arity L (inr _ f))) -> Term1.

My difficulty with this definition was that the induction principle generated by Coq
is too weak to work with. The generated induction principle Term1_ind is:

Term1_ind

: forall P : Term1 -> Prop,

(forall n : nat, P (var1 n)) ->

(forall (f : Functions L)

(v : Vector Term1 (arity L (inr (Relations L) f))),

P (apply1 f v)) -> forall b : Term1, P b.

Term1_ind requires showing P (apply1 f v) for all f and v without any inductive
hypothesis about v. If, for instance, one wants prove that a particular variable is
not used in a term, one will need to verify that this holds for each term in the
vector v; however, the inductive hypothesis for each term of the vector v is not
available.

Instead I created two mutually inductive types: Term and Terms.

Variable L : Language.
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Inductive Term : Set :=

| var : nat -> Term

| apply : forall f : Functions L,

Terms (arity L (inr _ f)) -> Term

with Terms : nat -> Set :=

| Tnil : Terms 0

| Tcons : forall n : nat,

Term -> Terms n -> Terms (S n).

Again the automatically generated induction principle is too weak, but the Scheme

command generates suitable mutual-inductive principles. For example, the com-
mand

Scheme Term_Terms_rec := Minimality for Term Sort Set

with Terms_Term_rec := Minimality for Terms Sort Set.

generates a term of the following type.

Term_Terms_rec

: forall (P : Set) (P0 : nat -> Set),

(nat -> P) ->

(forall f : Functions L,

Terms (arity L (inr (Relations L) f)) ->

P0 (arity L (inr (Relations L) f)) -> P) ->

P0 0 ->

(forall n : nat, Term -> P -> Terms n -> P0 n -> P0 (S n)) ->

Term -> P.

In this case we have two “result” types. P is the result of evaluating on Term, while
P0 is the result of evaluation on Terms.

The disadvantage of this approach is that useful lemmas about Vectors must be
reproved for Terms. Some of these lemmas are quite tricky to prove because of the
dependent type. For example, proving forall x : Terms 0, Tnil = x is surpris-
ingly difficult.

It turns out that the Term1 definition would have been adequate. One can explic-
itly make a sufficient induction principle by using nested Fixpoint functions
[Marche, 2005].

Section RecursionDef.

Variable P : Set.

Variable P0 : nat -> Set.

Variable varcase : nat -> P.

Variable applycase :

forall f : Functions L, Vector Term1 (arity L (inr _ f)) ->

P0 (arity L (inr _ f)) -> P.
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Variable nilcase : P0 0.

Variable conscase :

forall n : nat, Term1 -> P -> Vector Term1 n -> P0 n -> P0 (S n).

Fixpoint Term1_rec_new (t : Term1) : P :=

let fix Terms1_rec (n : nat)(vec : (Vector Term1 n)) {struct vec} :

P0 n :=

match vec in (Vector _ n) return (P0 n) with

| Vnil => nilcase

| Vcons term m terms =>

conscase m term (Term1_rec_new term) terms (Terms1_rec m terms)

end

in

match t with

| var1 n => varcase n

| apply1 f terms => applycase f terms (Terms1_rec _ terms)

end.

End RecursionDef.

I would recommend using something like the Term1 definition with Term1_rec_new

in future work.

The definition of Formula was straightforward.

Inductive Formula : Set :=

| equal : Term -> Term -> Formula

| atomic : forall r : Relations L, Terms (arity L (inl _ r)) ->

Formula

| impH : Formula -> Formula -> Formula

| notH : Formula -> Formula

| forallH : nat -> Formula -> Formula.

I defined the other logical connectives in terms of impH, notH, and forallH.

Definition orH (A B : Formula) := impH (notH A) B.

Definition andH (A B : Formula) := notH (orH (notH A) (notH B)).

Definition iffH (A B : Formula) := andH (impH A B) (impH B A).

Definition existH (x : nat) (A : Formula) :=

notH (forallH x (notH A)).

The equals relation is part of the definition of Formula, so it does not occur as a
relation symbol in the language. The nat parameter of forallH is the index of the
variable being quantified. The Terms parameter occurring in atomic would be
replaced with (Vector Term1) if the definition of Term1 were used. The H at the
end of the logic connectives, such as impH, stands for “Hilbert” and is used to distin-
guish them from Coq’s connectives.

For example, the formula ¬∀x0.∀x1.x0 = x1 is represented by:
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notH (forallH 0 (forallH 1 (equal (var 0) (var 1))))

There are two common alternatives to handle variable binding. One alternative is
to use higher order abstract syntax to handle bound variables by giving forallH

the type (Term -> Formula) -> Formula. I would represent the above example
as:

notH (forallH (fun x : Term =>

(forallH (fun y : Term => (equal x y)))))

This technique would require additional work to disallow “exotic terms” that are
created by passing a function into forallH that does a case analysis on the term
and returning entirely different formulas in different cases. Despeyroux and
Hirschowitz [Despeyroux and Hirschowitz, 1994] address this problem by creating a
complicated predicate that only valid formulas satisfy. Recently,
Chlipala [Chlipala, 2008] has created an elegant solution for using higher order
abstract syntax.

Another alternative is to use de Bruijn indices to eliminate named variables. How-
ever dealing with free and bound variables with de Bruijn indices can be diffi-
cult [McBride and McKinna, 2004a].

Using named variables allowed me to closely follow the standard way of writing for-
mulas in mathematics. Using named variables is also helpful to persuade people of
the correctness of the statement of the incompleteness theorem, which refers to the
notion of provability and hence formulas.

Renaming bound variables turned out to be a constant source of work during devel-
opment, because variable names and terms were almost always abstract. In prin-
ciple the variable names could conflict, so it was constantly necessary to consider
this case and deal with it by renaming a bound variable to a fresh one. Perhaps it
would have been better to use de Bruijn indices and a deduction system that only
deduced closed formulas, or perhaps one of the alternative implementations of vari-
ables that I discuss in Section 7.7.

4.3 Definition of substituteFormula

I defined the function substituteFormula to substitute a term for all occurrences
of a free variable inside a given formula. While the definition of substituteTerm is
simple structural recursion, substitution for formulas is complicated by quantifiers.
Suppose we want to substitute the term s for xi in the formula ∀xj. ϕ and i � j.
Suppose xj is a free variable of s. If we naïvely perform the substitution, then the
occurrences of xj in s get captured by the quantifier. One common solution to this
problem is to disallow substitution for a term s when s is not substitutable for xi in
ϕ. The solution I took was to rename the bound variable in this case:

(∀xj. ϕ)[xi/s] 4 ∀xk.(ϕ[xj/xk])[xi/s]where k� i andxk is not free in ϕ or s
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Unfortunately this definition is not structurally recursive. The second substitution
operates on the result of the first substitution, which is not structurally smaller
than the original formula. Coq will not accept this recursive definition as is; it is
necessary to prove the recursion will terminate. I proved that substitution preserves
the depth of a formula, and that each recursive call operates on a formula of
smaller depth.

One of McBride’s mantras says, “If my recursion is not structural, I am using the
wrong structure” [McBride, 1999, p. 241]. In this case, my recursion is not struc-
tural because I am using the wrong recursion. Stoughton shows that it is easier to
define substitution that substitutes all variables simultaneously because the recur-
sion is structural [Stoughton, 1988]. If I had used this definition, I could have
defined substitution of one variable in terms of it and many of my difficulties would
have disappeared.

4.4 Definition of Prf

I defined the inductive type (Prf Gamma phi) to be the type of proofs of phi, from
the list of assumptions Gamma. Originally (Prf Gamma phi) was a member of the
Prop universe. It seemed natural to consider Γ⊢ ϕ as a proposition, but it is impor-
tant in this work to be able to distinguish between different proofs of the same
statement. To get the ability to distinguish between different proofs requires that
(Prf Gamma phi) be in Set.

Inductive Prf : Formulas -> Formula -> Set :=

| AXM : forall A : Formula, Prf (A :: nil) A

| MP : forall (Axm1 Axm2 : Formulas) (A B : Formula),

Prf Axm1 (impH A B) -> Prf Axm2 A ->

Prf (Axm1 ++ Axm2) B

| GEN : forall (Axm : Formulas) (A : Formula) (v : nat),

~ In v (freeVarListFormula L Axm) -> Prf Axm A ->

Prf Axm (forallH v A)

| IMP1 : forall A B : Formula, Prf nil (impH A (impH B A))

| IMP2 : forall A B C : Formula,

Prf nil (impH (impH A (impH B C))

(impH (impH A B) (impH A C)))

| CP : forall A B : Formula,

Prf nil (impH (impH (notH A) (notH B)) (impH B A))

| FA1 : forall (A : Formula) (v : nat) (t : Term),

Prf nil (impH (forallH v A) (substituteFormula L A v t))

| FA2 : forall (A : Formula) (v : nat),

~ In v (freeVarFormula L A) ->

Prf nil (impH A (forallH v A))

| FA3 : forall (A B : Formula) (v : nat),

Prf nil
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(impH (forallH v (impH A B))

(impH (forallH v A) (forallH v B)))

| EQ1 : Prf nil (equal (var 0) (var 0))

| EQ2 : Prf nil (impH (equal (var 0) (var 1))

(equal (var 1) (var 0)))

| EQ3 : Prf nil

(impH (equal (var 0) (var 1))

(impH (equal (var 1) (var 2)) (equal (var 0) (var 2))))

| EQ4 : forall R : Relations L, Prf nil (AxmEq4 R)

| EQ5 : forall f : Functions L, Prf nil (AxmEq5 f).

AxmEq4 and AxmEq5 are recursive functions that generate the equality axioms for
relations and functions. AxmEq4 R generates

x0 = x1 ⇒ � ⇒ x2n−2 = x2n−1 ⇒ (R(x0,x2,� ,x2n−2) ⇔ R(x1,x3,� ,x2n−1))

and AxmEq5 f generates

x0 = x1 ⇒ � ⇒ x2n−2 = x2n−1 ⇒ f(x0,x2,� ,x2n−2) = f(x1,x3,� ,x2n−1)

I found that replacing ellipses from informal proofs with recursive functions was
one of the most difficult tasks. This case was easy, but in general, the informal
proof does not contain information on what inductive hypothesis should be used
when reasoning about these recursive definitions. Figuring out the correct inductive
hypotheses was not always easy.

4.5 Definition of SysPrf

There are some problems with the definition of Prf given. It requires the list of
axioms to be in the correct order for the proof. For example, if we have Prf

Gamma1 (impH phi psi) and Prf Gamma2 phi then we can conclude only Prf

Gamma1++Gamma2 psi. We cannot conclude Prf Gamma2++Gamma1 psi or any other
permutation of the axioms. If an axiom is used more than once, it must appear in
the list more than once. If an axiom is never used, it must not appear. Also, the
number of axioms must be finite because they form a list.

One possible solution would be to add permutation, weakening, and contraction
rules for axioms to the inductive definition of Prf. However, this would further
complicate the definition of Prf, which we would like to keep as simple as possible,
and it would still not allow the number of axioms to be infinite. To solve this
problem, I instead defined System to be Ensemble Formula and SysPrf T phi to
be the proposition that the system T proves phi.

Definition System := Ensemble Formula.

Definition mem := Ensembles.In.
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Definition SysPrf (T : System) (f : Formula) : Prop :=

exists Axm : Formulas,

(exists prf : Prf Axm f,

(forall g : Formula, In g Axm -> mem _ T g)).

The type Ensemble A represents subsets of A by predicates of type A -> Prop.
Recall that a : A is considered to be a member of T : Ensemble A if and only if
the type T a is inhabited. I also defined mem to be Ensembles.In so that it does
not conflict with List.In.

The separation between the notions of Prf and SysPrf is useful. Each member of
Prf is a finite value that can easily be encoded by a natural number (see Sec-
tion 5.1), while SysPrf allows one to work with infinite axiom systems.

4.6 The Deduction Theorem

The deduction theorem states that if Γ ∪ {ϕ} ⊢ ψ then Γ ⊢ ϕ ⇒ ψ. In Coq its
formal statement is:

Theorem DeductionTheorem :

forall (T : System) (f g : Formula) (prf : SysPrf (Add _ T g) f),

SysPrf T (impH g f).

There is a choice of whether the side condition for the ∀-generalization rule,
~In v (freeVarListFormula L Axm), should be required or not. If this side con-
dition is removed, then the deduction theorem requires a side condition on it. Usu-
ally all the formulas in an axiom system are closed, so the side condition on the ∀-
generalization is easy to show. I therefore decided to keep the side condition on the
∀-generalization rule.

Originally my proof of the deduction theorem relied on an assumption that the lan-
guage is decidable, meaning that the function and relation symbols form decidable
types.

• forall x y : Functions L, {x=y} + {x<>y}

• forall x y : Relations L, {x=y} + {x<>y}

The classical proof of the deduction theorem at one point considers whether ϕ ∈ F
or ϕ � F for a finite list of axioms F . This disjunction is provable under the
assumption that the language is decidable. Because most reasonable languages are
decidable, this extra assumption was not much of a burden; however, I regularly
used the deduction theorem to prove general logical validities. Each time I did this
I knew that there must be a way of proving the theorem without resorting to the
deduction theorem, and that these theorems did not require the assumption that
the language be decidable. There was good reason for this: the deduction theorem
does not require that the language be decidable.
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To understand how to remove the assumption that the language is decidable, one
needs to first see how it is used in the classical proof. The classical proof works by
translating a deduction Γ ∪ {ϕ} ⊇ F ⊢ ψ into a new deduction Γ ⊇ F ′ ⊢ ϕ ⇒ ψ,
where ∆ ⊇G ⊢ θ means that θ is proved using the finite set of axioms G, which are
a subset of the system ∆. The key place excluded middle is used is when Γ∪ {ϕ}⊇
F ⊢ ∀x. ψ by the GEN rule (forall generalization). In this case, x � FV(F ), and
F ⊢ ψ. The classical proof considers two possible cases. In one case, ϕ ∈ F , and
therefore x � FV(ϕ). By induction we know that Γ ⊇ F ′ ⊢ ϕ ⇒ ψ. By using the
fact that x � FV(ϕ), plus some logical rules, one can conclude that Γ ⊇ F ′ ⊢ ϕ ⇒

∀x. ψ. In the other case ϕ � F , and thus Γ ⊇ F ⊢ ∀x.ψ. Then it easily follows that
Γ⊇F ⊢ ϕ ⇒ ∀x. ψ.
Notice the fact that ϕ � F is simply used to conclude that Γ ⊇ F . Therefore, it is
sufficient to prove that ϕ ∈ F ∨ Γ ⊇ F instead of using excluded middle. This dis-
junction is easy to prove from the assumption that Γ ∪ {ϕ} ⊇ F by performing
induction on F . The decidability of the language is not needed.

This illustrates one technique for removing uses of the excluded middle. One can
follow the two cases of the disjunction until one gets to two formulas whose dis-
junction you can constructively prove. In some sense, my modified proof is simpler
than before. The reasoning to get from ϕ � F to Γ ⊇ F has been removed. On the
other hand, the proof is more complicated because an additional argument is
needed to prove ϕ∈F ∨Γ⊇F .

Although this technique sounds easy, I must confess that I only noticed it in retro-
spect. I derived this new proof using my intuition that I ought to be able to use the
constructive disjunction hidden inside the union operation to decide between these
two cases and I kept fiddling until I got it.

4.7 Substitution Lemmas

After some development, it became clear that there were three key substitution
lemmas to be proved:

1. Γ⊢ ϕ[xi/s]⇔ ϕ when xi � FV(ϕ)

2. Γ⊢ ϕ[xi/xj][xj/s]⇔ ϕ[xi/s] when xj � FV(ϕ)\{xi}
3. Γ⊢ ϕ[xi/s][xj/t]⇔ ϕ[xj/t][xi/s] when i� j, xi � FV(t), and xj � FV(s)

Ideally I would be able to prove the equality between the formulas; however, the
formulas are not equal because applying the different substitution operations may
cause bound variables to be renamed in different ways. The result is that the dif-
ferent sides of the equation are only α-equivalent, meaning equivalent up to
renaming of bound variables. I never defined an equivalence relation for α-equiva-
lence, so I instead proved the logical equivalence of the formulas. In Coq these
lemmas are stated as follows.

Lemma subFormulaNil :
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forall (f : Formula) (T : System) (v : nat) (s : Term),

~ In v (freeVarFormula L f) ->

SysPrf T (iffH (substituteFormula L f v s) f).

Lemma subFormulaTrans :

forall (f : Formula) (T : System) (v1 v2 : nat) (s : Term),

~ In v2 (list_remove _ eq_nat_dec v1 (freeVarFormula L f)) ->

SysPrf T

(iffH (substituteFormula L

(substituteFormula L f v1 (var v2)) v2 s)

(substituteFormula L f v1 s)).

Lemma subFormulaExch :

forall (f : Formula) (T : System) (v1 v2 : nat) (s1 s2 : Term),

v1 <> v2 ->

~ In v2 (freeVarTerm L s1) ->

~ In v1 (freeVarTerm L s2) ->

SysPrf T

(iffH (substituteFormula L (substituteFormula L f v1 s1) v2 s2)

(substituteFormula L (substituteFormula L f v2 s2) v1 s1)).

These proofs were the first major challenge that I faced. These theorems are not
discussed in Hodel’s textbook [Hodel, 1995], so it was necessary for me to develop
the proofs myself. Naturally I proceeded by induction on the depth of the formula
ϕ. The cases dealing with formulas of the form ∀xj.ψ were the most difficult.

For example, consider the case of trying to prove the equivalence of (∀xj. ψ)[xi/s]
and ∀xj. ψ when xi � FV(∀xj. ψ). If i = j then the two formulas are identical, so
that case is trivial. In the case that i� j then there is a k different from i such that
xk � FV(s) and such that (∀xj.ψ)[xi/s] = ∀xk.(ψ[xj/xk][xi/s]) (it may be the case
that k = j). To prove one direction of the implication, consider the following rea-
soning inside first-order classical logic. Suppose that ∀xk.(ψ[xj/xk][xi/s]) holds.
Then one can derive ψ[xj/xk][xi/s][xk/xj]. By substitution lemma 3, one can
derive ψ[xj/xk][xk/xj][xi/s]. By substitution lemma 1, one can derive
ψ[xj/xk][xk/xj]. By substitution lemma 2, one can derive ψ[xj/xj] which is equal
to ψ. Then, using generalization, one can conclude ∀xj. ψ as required.

This segment of the inductive proof of substitution lemma 1 relied on substitution
lemmas 2 and 3. Eventually I discovered that my proofs of substitution lemmas 2
and 3 also relied on substitution lemmas 1, 2, and 3. This meant I had to prove all
three substitution lemmas simultaneously by induction in one large lemma.

Remark subFormulaNTE :

forall (f : Formula) (T : System),

(forall (v : nat) (s : Term),

~ In v (freeVarFormula L f) ->

SysPrf T (iffH (substituteFormula L f v s) f)) /\

(forall (v1 v2 : nat) (s : Term),

~ In v2 (list_remove _ eq_nat_dec v1 (freeVarFormula L f)) ->
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SysPrf T

(iffH (substituteFormula L

(substituteFormula L f v1 (var v2)) v2 s)

(substituteFormula L f v1 s))) /\

(forall (v1 v2 : nat) (s1 s2 : Term),

v1 <> v2 ->

~ In v2 (freeVarTerm L s1) ->

~ In v1 (freeVarTerm L s2) ->

SysPrf T

(iffH (substituteFormula L (substituteFormula L f v1 s1) v2 s2)

(substituteFormula L (substituteFormula L f v2 s2) v1 s1))).

My proof of this lemma alone is about 1900 lines long. Admittedly, this was one of
my early formal proofs, so it is not very well written. Nonetheless, even if I wrote it
again today it would still be a substantial proof. These lemmas are not typically
covered in logic courses or logic textbooks because typically the issue of bound vari-
ables and renaming is not addressed. However, it is exactly the bookkeeping
involved in renaming bound variables and making sure that the side conditions
about variables being free in expressions are satisfied that makes proving this
lemma so difficult. When creating formal proofs, it is not possible to omit proving
theorems just because they do not appear to provide much insight.

The difficulty of this proof strongly suggests that this is the wrong way to handle
bound variables and substitution. These lemmas would probably be easier to prove,
or may not even have been necessary if I had defined simultaneous substitution as
the primitive substitution operation.

4.8 Languages and Theories of Number Theory

So far the theory of first order logic has been abstract over the language. To apply
this theory I need some instances of languages. I created two languages. The first
language, LNT, is the language of number theory and just has the function symbols
Plus, Times, Succ, and Zero with appropriate arities. The second language, LNN, is
the language of NN and has the same function symbols as LNT plus one relation
symbol, LT, for less than.

I defined two axiom systems NN and PA (Peano arithmetic) for the languages LNN

and LNT respectively. NN and PA share six axioms:

1. ∀x0.¬ Sx0 = 0

2. ∀x0.∀x1.Sx0 = Sx1 ⇒ x0 = x1

3. ∀x0.x0 + 0 = x0

4. ∀x0.∀x1.x0 + Sx1 = S(x0 + x1)

5. ∀x0.x0 × 0 = 0
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6. ∀x0.∀x1.x0 × Sx1 = (x0 × x1) + x0

NN has three additional axioms about less than:

1. ∀x0.¬ x0 < 0

2. ∀x0.∀x1.x0 < Sx1 ⇒ (x0 = x1 ∨ x0 < x1)

3. ∀x0.∀x1.x0 < x1 ∨ x0 = x1 ∨ x1 < x0

PA has an infinite number of induction axioms that follow one schema.

• (schema) ∀xi1.� ∀xin
. ϕ[xj/0] ⇒ ∀xj.(ϕ ⇒ ϕ[xj/Sxj]) ⇒ ∀xj. ϕ

The xi1, � , xin
are the free variables of ∀xj. ϕ. The quantifiers ensure that all the

axioms of PA are closed.

Because NN is in a different language than PA, a proof in NN is not a proof in PA.
In order to reuse the work done in NN, I created a function called
LNN2LNT_formula to convert formulas in LNN into formulas in LNT by replacing
occurrences of t0 < t1 with (∃x2. x0 + (Sx2) = x1)[x0/t0, x1/t1], where ϕ[x0/t0,
x1/t1] is the simultaneous substitution of t0 for x0 and t1 for x1. I then proved that
if NN ⊢ ϕ then PA ⊢ LNN2LNT_formula(ϕ) by using the induction schema to prove
the three axioms about < in NN.
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Chapter 5

Representing Functions

The key to proving the incompleteness theorem is to show that one can represent
the provability predicate with a first-order formula. A common approach is to
develop a primitive recursive function that can verify proofs and then prove that
every primitive recursive function is representable by a first-order formula. Because
primitive recursive functions can only operate on natural numbers, not formulas or
proofs, it is necessary to select a way of encoding data structures as natural num-
bers.

5.1 Coding

Gödel’s original approach was to code a formula as a list of numbers and then code
that list using properties from the prime decomposition theorem [Gödel, 1931]. I
avoided needing theorems about prime decomposition by instead following Hodel’s
technique of using the Cantor pairing function [Hodel, 1995]. The Cantor pairing
function, cPair, is a commonly used bijection between N×N and N.

cPair(a, b) 4 a+
∑

i=1

a+b

i

All my inductive structures were easy to recursively encode. I gave each con-
structor a unique number and paired that number with the encoding of all its
parameters. For example, I defined codeFormula as follows, where codeR is a
coding of the relation symbols for the language:

Fixpoint codeFormula (f : Formula) : nat :=

match f with

| fol.equal t1 t2 => cPair 0 (cPair (codeTerm t1) (codeTerm t2))

| fol.impH f1 f2 =>

cPair 1 (cPair (codeFormula f1) (codeFormula f2))

| fol.notH f1 => cPair 2 (codeFormula f1)

| fol.forallH n f1 => cPair 3 (cPair n (codeFormula f1))

| fol.atomic R ts => cPair (4+(codeR R)) (codeTerms _ ts)

end.

I created coding functions for all my data structures including lists, terms, for-
mulas, and proofs. I proved each coding function was injective.
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For each language, a function called nattoTerm : nat -> Term transforms a nat-
ural number to the closed term representing it. In this thesis I will refer to this
function as p�q, so p0q = 0, p1q = S0, etc. I will also use pϕq for pcodeFormula ϕq

and ptq for pcodeTerm tq.

5.2 Primitive Recursive Functions

In this section, I use definitions for extensional equality of functions on the natural
numbers. In particular I defined the following:

• naryFunc is the type of n-ary functions.

• naryRel is the type of n-ary relations.

• extEqual is extensional equality of n-ary functions.

• charFunction returns the n-ary characteristic function of an n-ary relation.

I defined the type PrimRec n for primitive recursive expressions of arity n as:

Inductive PrimRec : nat -> Set :=

| succFunc : PrimRec 1

| zeroFunc : PrimRec 0

| projFunc : forall n m : nat, m < n -> PrimRec n

| composeFunc :

forall (n m : nat) (g : PrimRecs n m) (h : PrimRec m),

PrimRec n

| primRecFunc :

forall (n : nat) (g : PrimRec n) (h : PrimRec (S (S n))),

PrimRec (S n)

with PrimRecs : nat -> nat -> Set :=

| PRnil : forall n : nat, PrimRecs n 0

| PRcons : forall n m : nat,

PrimRec n -> PrimRecs n m -> PrimRecs n (S m).

The type PrimRec contains expressions of primitive recursive functions, but are not
themselves functions. I defined evalPrimRec : forall n : nat, PrimRec n ->

naryFunc n to convert expressions into a functions. Rather than working directly
with primitive recursive expressions, I worked with particular Coq functions and
proved they were extensionally equal to the interpretation of some primitive recur-
sive expressions. This relation is captured by isPR.

Definition isPR (n : nat) (f : naryFunc n) : Set :=

{p : PrimRec n | extEqual n (evalPrimRec _ p) f}.

Similarly, an n-ary relation is considered primitive recursive if its characteristic
function is primitive recursive.

Definition isPRrel (n : nat) (R : naryRel n) : Set :=

isPR n (charFunction n R).
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5.3 Creating Primitive Recursive Functions

I proved that many functions are primitive recursive, including plus, mult, pred,
minus, max, and cPair. I also proved that many relations have characteristic func-
tions that are primitive recursive, such as ltBool, leBool, and beq_nat (equality
on the natural numbers). More importantly, I proved several theorems about cre-
ating primitive recursive functions out of others. For example, if f is a 2-ary primi-
tive recursive function, then fun a b c : nat => f a b is a 3-ary primitive recur-
sive function. I also proved that course-of-values recursion is primitive recursive.
Another very useful theorem states that a bounded search for the least number sat-
isfying a primitive recursive predicate is primitive recursive. The bounded search is
used, for instance, to compute the two projection functions of the Cantor pairing
function. Given a code n for a pair of natural numbers, a function called searchXY

finds the first c ≤ n such that n <
∑

i=1
c+1

i. The first projection, cPairPi1, returns
n−∑

i=1
c

i. The second projection, cPairPi2, returns c− cPairPi1(n).

I needed to show that many functions are primitive recursive, including operations
on lists, computing free variables, checking if a formula is an instance of Peano
arithmetic’s induction schema, and more. Of course these functions do not operate
on natural numbers, so they themselves cannot be primitive recursive. Instead, I
proved that the corresponding operations on the codes of these values are primitive
recursive.

It is easy to prove that certain Coq functions are extensionally equivalent to primi-
tive recursive functions when one defines functions from a limited set of primitives.
For example, the function codeApp, which given the code of two lists of natural
numbers returns a code of the concatenation of the two lists, is defined as follows:

Definition codeApp : nat -> nat -> nat :=

evalStrongRec 1

(fun n Hrecs p1 : nat =>

switchPR n

(S (cPair (cPairPi1 (pred n))

(codeNth (n - S (cPairPi2 (pred n))) Hrecs))) p1).

This unusual definition is built out of functions such as evalStrongRec, which does
course-of-values recursion, and switchPR, which behaves like an if statement by
returning one of the two last arguments depending on whether the first argument is
zero or not. Because I proved that functions built from these kinds of pieces are
primitive recursive, it was easy to prove that codeApp is primitive recursive.

5.3.1 codeSubFormula is Primitive Recursive

I proved that substitution is primitive recursive, meaning that I proved that the
corresponding function operating on codes is primitive recursive. The function on
codes is called codeSubFormula, and I proved it is correct in the following sense:
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Lemma codeSubFormulaCorrect :

forall (f : Formula) (v : nat) (s : Term),

codeSubFormula (codeFormula f) v (codeTerm s) =

codeFormula (substituteFormula L f v s).

The proof that codeSubFormula is primitive recursive is very difficult. The problem
is again with the need to rebind bound variables. Normally one would attempt to
create this primitive recursive function by using course-of-values recursion. Course-
of-values recursion requires all recursive calls to have a smaller code than the orig-
inal call. Renaming a bound variable requires two recursive calls. Recall the defini-
tion of substitution in this case:

(∀xj. ϕ)[xi/s] 4 ∀xk.(ϕ[xj/xk])[xi/s]where k� i andxk is not free in ϕ or s

If one is lucky, one might be able to make the inner recursive call (the value of k
could cause difficulties), but there is no reason to suspect that the input to the
second recursive call, ϕ[xj/xk], is going to have a smaller code than the original
input, ∀xj. ϕ.

If I had used the alternative definition of substitution, where all variables are sub-
stituted simultaneously, there would still be problems. The input would include a
list of variable and term pairs that represents the substitutions to be performed. In
this case a new pair would be added to the list when making the recursive call, so
the input to the recursive call could still have a larger code than the input to the
original call. Perhaps if I had represented variables with de Bruijn indices, then it
would have been easier to prove that substitution is primitive recursive.

Hodel’s presentation avoids this difficult proof in two ways. Firstly, he gives only a
cursory presentation of the algorithms needed, so no detailed proof that substitu-
tion is primitive recursive is given. Secondly, his definition of substitution requires
that the term substituting be substitutable into the context of the variable being
replaced. This substitutability restriction means that bound variables need never
be renamed. This would greatly simplify the proof that substitution is primitive
recursive, if it were given.

With my representation it seems that using course-of-values recursion is difficult or
impossible. Instead, inspired by Shankar’s work [Shankar, 1994], I introduced the
notion of a trace of computation. Shankar used a linear list to represent his compu-
tation, but I used a tree structure. Think of the trace of computation as a finite
tree where the nodes contain the input and output of each recursive call. The sub-
trees of a node are the traces of the computation of the recursive calls. This tree
can be coded as one number. I proved that there is a primitive recursive function
called checkSubFormulaTrace that verifies if a number represents a trace of the
computation of substitution. This function inspects each node of the tree to verify
that each child node has the correct inputs based on the inputs of the current node,
and it verifies that the output of the current node is correct based on the outputs
of the child nodes. Codes for trees are strictly larger than codes for subtrees, so
there is no problem using course-of-values recursion on the trace of the computa-
tion.
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Figure 5.1. Verifying the trace of the computation of substitution in the case of ∀y.ϕ.

Figure 5.1 illustrates the verification of a node in the case of computing
(∀xj. ϕ)[xi/t] when xj ∈ FV(t), which is the most difficult case. The figure illus-
trates a node with two child nodes. The rest of the tree is omitted. The function
checkSubFormulaTrace verifies that the input to the left child is correct by veri-
fying that the variable xj is the quantified variable from the root input formula,
that the formula ϕ is the body of the root input formula, and that the new variable
xk is computed from the root input formula and the term t in the same way that
substituteFormula computes it. The function checkSubFormulaTrace also veri-
fies that the inputs to the right child are correct by verifying that the variable xi

and the term t are the same as the root input formula and that the formula is the
same as the output formula from the left child. Finally, checkSubFormulaTrace

verifies that the output formula of the root node is correct by verifying that it
binds the variable xk and that the body is the same as the output formula of the
right child. Course-of-values recursion verifies the correctness of the left and right
subtrees.

The key to proving that substitution ϕ[xj/s] is primitive recursive is to create a
primitive recursive function that computes a bound on how large the code of the
trace of computation can be for a given input. I constructed a primitive recursive
function for which it is relatively easy to prove that it bounds the size of the code
of the trace. This function computes the largest variable index occurring in the
input, and adds 3d where d is the depth of the formula ϕ. This is an upper bound
on the largest variable index that could be created during the computation of sub-
stitution. Let C be the max of the code of the variable with this index and the
code for the term s. Let C ′ be the code of the formula ϕ with every variable
(bound or not) replaced by the variable xC. Consider a full binary tree of depth d

where each node contains three pseudo-input values of C, C, and C ′, and a pseudo-
output value of C ′. I proved that the code of this tree is larger than the code for
the trace of the computation of substitution. I proved that computing the code of
this large tree is primitive recursive. I created another primitive recursive function
that searches for the trace of computation up to this bound. This is composed with
another function that extracts the result of substitution from the trace of the com-

5.3 Creating Primitive Recursive Functions 35



putation. Thus codeSubFormula is primitive recursive. I then proved that
codeSubFormula is correct by proving that all of the above computation works (not
an easy task).

5.3.2 checkPrf is Primitive Recursive

Given a code for a formula and a code for a proof, the function checkPrf returns 0
if the proof does not prove the formula; otherwise, it returns one plus the code of
the list of axioms used in the proof. I proved that this function is primitive recur-
sive, as well as proving that it is correct in the following sense: for every proof p of
F ⊢ ϕ, checkPrf(pϕq, ppq) = 1 + pFq; and for all n, m : N if checkPrf(n, m) � 0
then there exists ϕ, F , and some proof p of F ⊢ ϕ such that pϕq =n and ppq=m.

The function checkPrf also ensures that all the formulas used in the proof are well
formed, which means it checks to make sure that all of the function and relation
symbols are part of the language. In principal this check is not needed, because any
proof that uses extra symbols in intermediate steps can be transformed into a proof
that does not use extra symbols; however it was easier to prove the correctness of
checkPrf with this restriction.

5.3.3 Efficiency of Primitive Recursive Functions

As one may imagine, the above functions are quite slow at computing. In partic-
ular, codeSubFormula is even slower than I have suggested above. Instead of com-
puting the depth of ϕ, I use the code of ϕ directly, because it serves as a suitable
upper bound on the depth of ϕ. These extremely slow functions are fine to use
because all that is important is that there exists some primitive recursive function
that could do the computation. The function never actually needs to be executed.
All that is needed is the fact that these functions can be represented by some first
order formula.

5.4 Representing Primitive Recursive Functions

Informally, an n-ary function f is representable in NN if there exists a formula ϕ

such that

1. the free variables of ϕ are among x0,� ,xn.

2. for all a1,� , an :N, NN⊢ ϕ[x1/pa1q,� ,xn/panq] ⇔ x0 = pf(a1,� , an)q.

I proved that every primitive recursive function is representable in NN, or rather
that the interpretation of every primitive recursive expression is representable. It is
easy to show that the projFuncs and the basic functions zeroFunc and succFunc

are representable. Much more difficult is showing that the composition and primi-
tive recursion of representable functions are representable.
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Given formulas ϕi that represent n-ary functions for 0≤ i <m, and given a formula
ψ that represents an m-ary function, the composition can be represented by:

∃xn+1.� ∃xn+m.ψ[x1/xn+1,� ,xm/xn+m]∧ ϕ0[x0/xn+1]∧� ∧ ϕm−1[x0/xn+m]

The difficulty in proving that the composition of m n-ary representable functions
with one m-ary representable function is representable is proving that it works for
all m and n. The proof presented by Hodel [Hodel, 1995] makes heavy use of
ellipses and is more like a proof schema in terms of m and n. Of course, one cannot
use ellipses in formal proofs. I felt I could prove the composition lemma for any
particular m and n, but it was very difficult to create a proof that works for all m
and n. The proof must proceed by induction on m and n; however, Hodel’s
proof [Hodel, 1995] offers no indication of which variable to do induction on first,
nor what inductive hypothesis to use. The key insight was to allow more flexibility
in the choice of indices for the bound variables. I prove for all w ≥n that

∃xw+1.� ∃xw+m.ψ[x1/xw+1,� ,xm/xw+m]∧ ϕ0[x0/xw+1]∧� ∧ ϕm−1[x0/xw+m]

represents the composition. I proceed by induction first on n and then on m. Even
with this knowledge, the proof is difficult because n and m are both variables of
the dependent type of naryFunc. Reasoning about dependent types is quite diffi-
cult, because Coq cannot automatically figure out how to generalize the dependent
variables in the goal and context to make induction go through. It took some prac-
tice before I was able to figure out how to do the correct generalizations myself.

Arguably, Hodel’s proof indicates this flexible choice of indices for the bound vari-
ables, because he uses the variables y1,� , yk, which are not in his formal syntax for
logic. Instead he says, “The letters x, y, and z are used to denote individual vari-
ables.” [Hodel, 1995, p. 135] This means his notation is ambiguous. When he uses
xn, is he referring to a formal variable for logic or is it a variable standing for a
formal variable? It is exactly this sort of subtle ambiguity that makes translating
paper proofs into formal proofs difficult. I do not believe Hodel is alone in making
this ambiguity. I suspect most presentations of mathematical logic have such ambi-
guities.

Proving that the primitive recursion of representable functions is representable
requires using Gödel’s β-function along with the Chinese remainder theorem.
Gödel’s β-function is a function that codes array indexing. A finite list of numbers
a0, � , an is coded as a pair of numbers (x, y) and β(x, y, i) = ai. The β-function is
special because it can be represented directly in terms of plus and times. The Chi-
nese remainder theorem is used to prove that the β-function works.

Primitive recursion is represented by a formula that states the existence of a min-
imal witness to the computation of primitive recursion. A witness is a pair of num-
bers which represents a finite list of numbers representing the intermediate steps of
the primitive recursion. The elements of this list are accessed using the representa-
tion of Gödel’s β-function. It is important to use the minimum witness in order to
prove that primitive recursion is representable. If the minimum is not used, it is
not possible to prove that the formula represents a function that returns a unique
value.
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The representability of primitive recursion was one of the most difficult develop-
ments of my proof. The formula representing primitive recursion is moderately
complicated and uses many bound variables and substitution. Once again, using
named variables made the work difficult. Throughout my proof, I needed to show
side conditions about variables not occurring as free variables. With all the quanti-
fiers used in this formula, proving the side conditions became quite a bit of work.
To aid my work I wrote a tactic called PRsolveFV to automatically generate proofs
of these side conditions. The proofs generated by PRsolveFV became quite large.
During development of the proof, when I was using Coq 7.3, generating these
proofs took several hours. Furthermore, all proof objects were stored in memory.
The Coq process took up many hundreds of megabytes of memory, and would
cause the operating system to thrash if there was not sufficient physical memory
available. During the transition to Coq 8.0, the Coq development team modified
my proof, inserting commands to temporarily make substituteFormula opaque.
This prevents the substituteFormula function from being computed and greatly
speeds up the matching process used by my tactics by bailing out of pattern
matches earlier. The result is that generating the proofs no longer takes hours. Coq
also no longer stores all loaded proof objects in memory. Now, on my modern
laptop, it takes less than 90 seconds and uses less than 80 megabytes of memory to
check the file containing this proof, PRrepresentable.v.

Most of the side conditions about variables occur as a result of reasoning symboli-
cally about substitutions in expressions with many quantifiers. Perhaps it would
have been worthwhile to build a reflection tactic to compute the results of symbolic
substitution. It is unclear how much work that would be compared to the time that
would have been saved. It is certain that the resulting proof objects would be much
smaller, and type-checking would be faster. Unfortunately I was not aware of this
technique at the time.

I took care to make the formulas representing the primitive recursive functions
clearly Σ1 by ensuring that all unbounded quantifiers were existential. For instance,
I used existential quantifiers in the representation of the composition of functions
when universal quantifiers would have also worked. Making the representation of
primitive recursion clearly Σ1 was more difficult. The minimum witness predicate
says that P (x) ∧ ∀y < x.¬P (y). The predicate P (x) is used both in a negative and
a positive context. To make the resulting formula Σ1, the first instance, P (x),
needs to be Σ1 and the second instance, P (y), needs to be Π1. Therefore, I made
two instances of the predicate used for the minimum witness, primRecSigmaFormu-
laHelp, and primRecPiFormulaHelp. I have not proven that the formulas are Σ1,
because it is not needed for the first incompleteness theorem. Such a proof would
be used for the second incompleteness theorem (see Section 7.6) and will be
straightforward to prove given the work I have already done.
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Chapter 6

The Incompleteness Theorem

There are two different statements of the incompleteness theorem. The original
statement that Gödel proved in 1931 was that any axiom system of sufficient power
that is ω-consistent is incomplete [Gödel, 1931]. In 1936, Rosser strengthened this
theorem so that only consistency was required [Rosser, 1936]. I proved both these
theorems in Coq. I will only discuss Rosser’s version because it is the more general
theorem.

6.1 Statement of the Incompleteness Theorem

The incompleteness theorem states that NN is essentially incomplete. This means
that for every axiom system T such that

• NN⊆T

• T can represent its own axioms

• T is a decidable set

there exists a sentence ϕ such that if T ⊢ ϕ or T ⊢¬ϕ then T is inconsistent.

My statement applies only to proofs in LNN, the language of NN. This statement
does not show the incompleteness of theories that extend the language.

In Coq the theorem is stated as:

Theorem Incompleteness

: forall T : System,

Included Formula NN T ->

RepresentsInSelf T ->

DecidableSet Formula T ->

exists f : Formula,

Sentence f /\

(SysPrf T f \/ SysPrf T (notH f) -> Inconsistent LNN T).

A System is Inconsistent if it proves all formulas.

Definition Inconsistent (T : System) :=
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forall f : Formula, SysPrf T f.

A Sentence is a Formula without any free variables.

Definition Sentence (f : Formula) :=

forall v : nat, ~ In v (freeVarFormula LNN f).

A DecidableSet is an Ensemble such that every item either belongs to the
Ensemble or does not belong to the Ensemble. This hypothesis is trivially true in
classical logic, but in constructive logic I needed it to construct the inconsistency.
Because this hypothesis is true classically, it does not claim that T is a computable
set. Although a constructive proof of this hypothesis requires T to be computable,
one cannot use this hypothesis to conclude that there exists a Turing machine that
decides T.

Definition DecidableSet (A : Type)(s : Ensemble A) :=

forall x : A, mem A s x \/ ~ mem A s x.

The RepresentsInSelf hypothesis restricts what a system T can be. The state-
ment of essential incompleteness normally requires T to be a computable set.
Instead I use the weaker hypothesis that the set T is expressible in the system T .

Given a system T extending NN and another system U along with a formula ϕU

with at most one free variable xi, I say ϕU expresses the axiom system U in T if
the following holds for all formulas ψ:

1. if ψ ∈U then T ⊢ ϕU[xi/pψq]

2. if ψ � U then T ⊢¬ϕU[xi/pψq]

I say U is expressible in T if there exists a formula ϕU such that ϕU expresses the
axiom system U in T .

In Coq I state that T is expressible in T as

Definition RepresentsInSelf (T : System) :=

exists rep : Formula, exists v : nat,

(forall x : nat, In x (freeVarFormula LNN rep) -> x = v) /\

(forall f : Formula,

mem Formula T f ->

SysPrf T (substituteFormula LNN rep v

(natToTerm (codeFormula f)))) /\

(forall f : Formula,

~ mem Formula T f ->

SysPrf T (notH (substituteFormula LNN rep v

(natToTerm (codeFormula f))))).

This is weaker than requiring that T be a computable set, because any computable
set of axioms T is expressible in NN. Since T is an extension of NN, any com-
putable set of axioms T is expressible in T .
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By using this weaker hypothesis, I avoid defining what a computable set is. Also, in
this form the theorem could be used to prove that any complete and consistent
theory of arithmetic cannot define its own axioms. In particular, this could be used
to prove Tarski’s theorem that the truth predicate is not definable.

6.2 The Fixed Point Theorem

The fixed point theorem states that for every formula ϕ there is some formula ψ

such that

NN⊢ ψ ⇔ ϕ[xi/pψq]

and that the free variables of ψ are the free variables ϕ with xi removed.

Lemma FixPointLNN :

forall (A : Formula) (v : nat),

{B : Formula |

SysPrf NN

(iffH B (substituteFormula LNN A v

(natToTermLNN (codeFormula B)))) /\

(forall x : nat,

In x (freeVarFormula LNN B) <->

In x (list_remove _ eq_nat_dec v (freeVarFormula LNN A)))}.

The fixed point theorem allows one to create “self-referential sentences”. I used this
to create Rosser’s sentence which states that for every code of a proof of itself,
there is a smaller code of a proof of its negation. The proof of Rosser’s incomplete-
ness theorem requires doing a bounded search for a proof, and this requires
knowing what is and what is not a proof in the system. For this reason, I require
the decidability of the axiom system. Without a decision procedure for the axiom
system, I cannot constructively do the search.

6.3 Provability Predicate

Let T and U be axiom systems such that there is some formula ϕU that expresses
the axioms of U in T . This can be combined with checkPrf to create a formula
called codeSysPrf such that codeSysPrf[x0/pnq, x1/pmq] is provable in T if and
only if m is the code of a proof in U of the formula coded by n. Another formula
codeSysPf can be derived from codeSysPrf by adding an existential quantifier for
x1 so that codeSysPf[x0/pnq] is provable in T if there exists a proof in U of a for-
mula coded by n.

The formulas codeSysPrf, codeSysPf, etc. are not derived from primitive recursive
functions so that the incompleteness theorem applies to axiom systems that may
not have a primitive recursive characteristic function.
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6.4 Essential Incompleteness of NN

All the pieces are in place for proving the essential incompleteness of NN. Suppose
T is a system extending NN that satisfies the requirements of the incompleteness
theorem. The axioms of T can be expressed in itself, so there exists a formula
codeSysPrf for checking proofs of T in T . The fixed point theorem is applied to
∀x1. codeSysPrf ⇒ ∃x2.x2 < x1 ∧ codeSysPrfNot[x1/x2] with the free variable x0

to create Rosser’s sentence. The codeSysPrfNot formula is derived from the
codeSysPrf formula such that codeSysPrfNot[x0/pnq, x1/pmq] is provable in T if
and only if m is the code of a proof in U of the negation of the formula coded by n.
Finally, I can prove that if T proves the Rosser sentence or if T proves the nega-
tion of the Rosser sentence, then T is inconsistent.

Hodel [Hodel, 1995] adds an extra axiom to NN, producing a system called NN+, in
order to prove the Gödel-Rosser incompleteness theorem:

• ∀x0.∀x1.(x0 = x1 ∨ x0 < x1) ⇒ x0 < Sx1

Leo Harrington pointed out to me that this extra axiom is not necessary. Hodel
uses this axiom in only one place, to prove (x0 = pnq ∨ x0 < pnq) ⇒ x0 < Spnq

for all n. However, it is possible to prove this in NN already. Thus I proved the
essential incompleteness theorem for NN instead of NN+.

6.5 Essential Incompleteness of Peano Arithmetic

Peano arithmetic (PA) is not an extension of NN for two reasons. First, the induc-
tion scheme of PA replaces some of the axioms of NN. Requiring that T include all
the axioms of NN for the incompleteness theorem was a small error on my part.
Instead I should have required that T prove all the axioms of NN. Fortunately this
slightly stronger theorem should be an easy corollary of my existing statement of
the incompleteness theorem. The second reason is that Peano arithmetic uses the
language of number theory, which is in a different language than that of NN; the
incompleteness theorem for NN only applies to systems with the language LNN.

The language of number theory is a subset of the language of NN, so it is possible
to inject formulas from the language of number theory into the language of NN.
Let T ′ be the union of NN with the axioms of T injected into the language of NN.
It is easy to prove that if T proves a formula ϕ, then T ′ proves ϕ′, where ϕ′ is the
formula ϕ injected into the language of NN. I also proved that if T ′ proves a for-
mula ψ, then T proves ψ ′, where ψ ′ is the formula ψ translated back into the lan-
guage of number theory according to the translation given in Section 4.8. The
codeSysPrf function and associated lemmas had only been proven valid for exten-
sions of NN. I used this translation mechanism back and forth between T and T ′ to
allow me to reuse the theorems about codeSysPrf. With this I was able to take
the proof of the Gödel-Rosser theorem for NN and modify it to prove the essential
incompleteness of Peano arithmetic.
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The most obvious application of the essential incompleteness of Peano arithmetic is
to apply it to PA itself. Peano arithmetic is a decidable theory that can represent
its own axioms. It is trivially an extension of itself. I constructed a primitive recur-
sive function to check if a number is the code of an instance of Peano arithmetic’s
induction schema (see Section 4.8). It was then easy to create a primitive recursive
function to check to see if a number codes an axiom of PA. Because all primitive
recursive functions are representable, I could create a predicate that represents the
axioms of PA in NN, and, by translation, in PA also. Finally, by Rosser’s incom-
pleteness theorem, I proved that if PA is complete then it is inconsistent. However,
it is possible to go further still.

6.6 Model Theory

Coq is sufficiently powerful to prove the consistency of Peano arithmetic. This
allowed me to prove the incompleteness of Peano arithmetic—there (constructively)
exists a sentence ϕ such that neither PA⊢ ϕ nor PA⊢¬ϕ.

Theorem PAIncomplete :

exists f : Formula,

Sentence f /\ ~(SysPrf PA f \/ SysPrf PA (notH f)).

I proved the consistency of Peano arithmetic by proving that the natural numbers
form a model. A model is a structure that contains a type, along with interpreta-
tions of the function and relations symbols.

Record Model (L:Language) : Type := model

{U : Set;

func : forall f : Functions L, naryFunc U (arity L (inr _ f));

rel : forall r : Relations L, naryRel U (arity L (inl _ r))}.

Formulas can be interpreted with respect to a model plus a valuation function that
assigns values to free variables occurring in the formula. A system has a model if
all the interpretations of all the formulas of the system hold. I proved that any
system that has a model is consistent.

One notable difficulty is that Coq’s logic is constructive while the internal logic is
classical. Therefore, it is difficult to interpret the proofs of the internal logic as
proofs in Coq. Instead of directly interpreting the formulas, I use a negative trans-
lation of the formulas. In particular, I use Kuroda’s negative translation [Troelstra
and Schwichtenberg, 1996, p. 42]. This translation of a formula places two nega-
tions inside each universal quantifier, and two negations outside the entire formula.
For example, I interpret ∀x0.∀x1.(Sx0 = Sx1 ⇒ x0 = x1) as

¬¬∀x:N.¬¬∀y:N.¬¬(S(x) =S(y)⇒x= y).

It was then easy for me to prove that the interpreted formula will always hold if
the original formula is provable from a system that has a model. From this I
proved that a system cannot both have a model and be inconsistent.
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Lemma ModelConsistent

: forall (L : Language) (M : Model L) (T : System L)

(value : nat -> U L M),

(forall f : Formula L,

mem (Formula L) T f ->

interpFormula L M value (nnTranslate L f)) ->

Consistent L T.

There is an alternative to the negative translation if the interpretation of all rela-
tion symbols (including equality) are stable. Recall that a relation is stable if
¬¬R(x0, � , xn−1) ⇒ R(x0, � , xn−1). In this case one can directly interpret proofs
and formulas inside Coq. The only tricky point is proving that the contrapositive
axiom, CP, holds for all formulas. With the assumption that atomic formulas are
stable, one can prove CP holds for atomic formulas. One can then prove that it
holds for all formulas by induction on the syntax of formulas. This is possible
because the primitive connectives of my formulas are (∀), (⇒), and (¬). All these
connectives have the same interpretation in constructive logic as they do in classical
logic. Only the logical connectives (∃) and (∨) have different interpretations in con-
structive logic.

Equality over the natural numbers is provably stable in constructive mathematics,
so this direct interpretation technique could have been used. However, I was
unaware of this direct interpretation at the time I proved the ModelConsistent

theorem. In the future, this direct interpretation could be implemented, allowing
one to directly translate theorems from the inner logic into theorems in Coq. Cur-
rently equality is always interpreted as Leibniz equality. Because Coq has no quo-
tient types, in the future it would be better to allow equality to be interpreted as
any equivalence relation, and require the function and relation interpretations to be
well defined with respect to the equivalence relation.
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Chapter 7

Remarks

7.1 Trusting the Proof

If one accepts the correctness of the proof checker, Coq, then one only needs to
verify that I correctly stated the incompleteness theorem. One needs to check the
definitions of all the expressions used in the statement and verify that no axioms
have been assumed. In fact, the proof depends on the Ensembles library which
declares an axiom of extensionality for Ensembles, but one can verify that I never
use this axiom. Fortunately, one does not need to check anything about coding or
primitive recursive functions because these are not used in the statement of the
incompleteness theorem.

7.2 Creating a Constructive Proof

Hodel did not constrain himself to giving a constructive presentation of the incom-
pleteness theorem. However, creating a constructive proof from his presentation
was not difficult. Gödel even noted in his original paper that his argument was
intuitionistically proven [Gödel, 1931]. In my development, there were only two
notable spots where using constructive logic was an issue.

One spot was the proof of the deduction theorem (see Section 4.6) where I origi-
nally used an assumption that language was decidable in order to prove ϕ = ψ ∨
ϕ � ψ for any two formulas ϕ and ψ. However, as I noted in that section, I was
later able to modify this proof to remove even this innocent assumption.

The second spot was in my proof that Peano arithmetic is consistent (see Sec-
tion 6.6). Technically, this is not even part of the incompleteness theorem. The dif-
ficulty was interpreting the classical deductions of Peano arithmetic in Coq’s con-
structive metalogic. However, as I noted in that section, using a double negation
interpretation works and allows one to conclude that Peano arithmetic is consistent
from the fact that Coq’s natural numbers form a model of the axioms.
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Even though my meta-system, Coq, is constructive, I still used classical logic for
the internal system. I did this because no one expects a constructive system to be
complete, so proving the incompleteness theorem for constructive systems did not
seem worthwhile.

7.3 Extracting the Sentence

Because my proof is constructive, it is possible, in principle, to compute the sen-
tence that makes Peano arithmetic incomplete. This was not done for two reasons.
The first reason is that the existential statement lives in Coq’s Prop universe, and
Coq only extracts from its Set universe. This was an error on my part. Fixing it to
use Coq’s Set existential quantifier should be fairly easy. The second reason is that
the sentence contains a closed term of the code of most of itself. This code is a
large number and it is written in unary notation. This would likely make the sen-
tence far too large to be actually printed. Perhaps there is some way of convincing
Coq to compute the Gödel sentence by writing the codes in standard decimal nota-
tion.

7.4 Robinson’s System Q

The proof of essential incompleteness is usually carried out for Robinson’s system
Q. I instead followed Hodel’s development [Hodel, 1995] and used NN. System Q is
PA with the induction schema replaced with

∀x0.∃x1.(x0 =0 ∨ x0 = Sx1).

All of NN axioms are Π1, whereas Q has the above Π2 axiom. Both axiom systems
are finite.

Neither system is strictly weaker than the other, so it would not be possible to use
the essential incompleteness of one to get the essential incompleteness of the other;
however, both NN and Q are sufficiently powerful to prove a small number of
needed lemmas, and afterward only these lemmas are used. If one abstracts my
proof at these lemmas, it would then be easy to prove the essential incompleteness
of both Q and NN.

7.5 Comparisons with Shankar’s 1986 Proof

It is worth comparing this formalization of the incompleteness theorem with
Shankar’s 1986 proof in the Boyer-Moore theorem prover. The development of my
proof is similar to Shankar’s development. The time frame is even similar; Shankar
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spent eighteen months developing his proof, and I spent sixteen months
(2002-03/2003-06-13) developing mine. It is unclear what this similar development
time indicates. Perhaps the development has some intrinsic difficulty that proof
systems have not removed in the last fifteen years. A fast computer does not help
me much because the computer spends most of its time idle as I create my proof.
On the other hand, perhaps there has been some improvement. I do not know how
much experience Shankar had with the Boyer-Moore proof system, but this was my
first major proof in a proof system. I only started using Coq a few months prior,
and the most significant work I had previously done was to prove there are not a
finite number of primes. I managed to do a more difficult version of the incomplete-
ness theorem in more generality in a shorter period of time.

The most notable difference is between the proof systems. In Coq, the user is
expected to input the proof, in the form of a proof script, and Coq will check the
correctness of the proof. In the Boyer-Moore theorem prover, the user states a
series of lemmas and the system generates the proofs. However, using the Boyer-
Moore proof system requires feeding it a “well-chosen sequence of
lemmas” [Shankar, 1994, p. xii]. Still, it seems the information being fed into the
two systems is similar.

There are some notable semantic differences between Shankar’s statement of incom-
pleteness and mine. His theorem only states that finite extensions of Z2, heredi-
tarily finite set theory, are incomplete, whereas my theorem states that even
infinite extensions of NN are incomplete as long as they are self-representable.
Also, Shankar’s internal logic allows axioms to define new relation or function sym-
bols as long as they come with the required proofs of admissibility. Such extensions
are conservative over Z2, but no computer verified proof of this fact is given. My
internal logic does not allow new symbols. Finally, I prove the essential incomplete-
ness of NN. NN is a weaker system than Z2, and uses the language of arithmetic.
Without any set structures, the proof is somewhat more difficult and requires using
Gödel’s β-function.

One of Shankar’s goals when creating his proof was to use a proof system without
modifications. Unfortunately he was not able to meet that goal; he ended up
making some improvements to the Boyer-Moore theorem prover. My proof was
developed in Coq without any modifications.

7.6 Gödel’s Second Incompleteness Theorem

The second incompleteness theorem states that if T is a system extending PA (or a
somewhat weaker system) such that T satisfies the requirements of the first incom-
pleteness theorem and T ⊢ ConT , then T is inconsistent. The formula ConT is some
reasonable sentence stating the consistency of T , such as ¬ProvT(p¬(∀x0.

x0 = x0)q), where ProvT is the provability predicate codeSysPf for T .
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If I had created a formal proof in Peano arithmetic of Gödel’s incompleteness the-
orem, I would have ⊢PA “Gödel’s first incompleteness theorem”. This formal proof
could then be mechanically transformed to create another formal proof in PA that
⊢PA (PA ⊢ “Gödel’s first incompleteness theorem”). The second incompleteness the-
orem follows from this by a short argument. Unfortunately, I have only shown that
⊢Coq “Gödel’s first incompleteness theorem”, so I cannot use the above argument to
create a proof of the second incompleteness theorem.

Still, this work can be used as a basis for formalizing the second incompleteness
theorem. The approach would be to prove the Hilbert-Bernays-Löb derivability
conditions:

1. if T ⊢ ϕ then T ⊢ProvT(pϕq)

2. T ⊢ProvT(pϕq) ⇒ProvT (pProvT (pϕq)q)

3. T ⊢ProvT(pϕ⇒ ψq) ⇒ ProvT(pϕq) ⇒ ProvT(pψq)

The second incompleteness theorem follows easily from Gödel’s first incompleteness
theorem and these three conditions [Shoenfield, 1967]. I proved the second incom-
pleteness theorem in Coq from the assumption that codeSysPf satisfies these three
conditions. The first condition is basically the same as one of the correctness condi-
tions for codeSysPf used in the first incompleteness theorem, so it was easy to
prove. All that remains is to prove the last two conditions.

The second condition will be the most difficult to prove. It is usually proved by
first proving that for every Σ1 sentence ϕ, PA ⊢ ϕ ⇒ ProvPA(pϕq). Because I made
sure that all primitive recursive functions are representable by a Σ1 formula, the
second derivability condition would be a direct corollary.

7.7 Proof Development

I did a lot of cut and paste work when developing my proof. In Coq it is hard to
reuse part of an existing proof because there are no tools for helping one to
abstract part of a proof. For example, when doing two branches of a case analysis,
one may find oneself doing the exact same proof (or similar proofs) in each case.
However, it is difficult to abstract out this proof by hand because it means writing
out the full statement of the lemma and generalizing the terms. It is so much easier
to just cut and paste the proof script and fix the names of the hypothesis. This
same problem is faced by programmers in many programming languages.

When developing a formal proof in Coq, I did a lot of moving back and forth over
the proof script. Often one wants to back up to adjust the inductive hypothesis, or
assert a lemma. Because some tactics automatically generate hypothesis names
based on the context, the hypothesis may sometimes get new names when moving
back and forth. This means that any reference one has to the old hypothesis names
are no longer valid and need to be changed, which creates a lot of work. A strong
discipline of avoiding automatically generated names by naming hypotheses oneself
can alleviate this problem.
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My formal proof follows a typical modern presentation of the incompleteness the-
orem. I used a Hilbert-style deduction system for classical logic. I used named vari-
ables for both free and bound variables in formulas. I defined substitution as sub-
stitution of one variable. I used primitive recursive functions to program checkPrf.
The only unusual step I took in my proof was to follow Hodel’s idea of using the
Cantor pairing function to encode data structures as numbers, rather than using
Gödel’s encoding that requires the fundamental theorem of arithmetic. Looking
back I feel that all these choices were bad choices (except the idea of using the
Cantor pairing function). If I were to do this project again I would use a sequent
calculus or perhaps a natural deduction system to get a constructive logic. I would
use some other way of dealing with variable binding. I am inclined to try a novel
approach such as using the nested datatype representation [Bird and Meertens,
1998][Hirschowitz and Maggesi, 2006] (with simultaneous substitution), or perhaps
I would use a nominal approach to binding [Pitts, 2006]. I would consider using
partial recursive functions instead of primitive recursive functions. These functions
can be interpreted in Coq by functions that return a coinductive container of the
result type [Capretta, 2005]. As a beginner at Coq, I could not have been expected
to know all these alternatives before I started, and, in fact, many of these tech-
niques have developed since I completed my proof.

I have shown that one can, with enough effort, create formal proofs that follow
standard mathematical arguments. However, following a standard mathematical
argument seems to be a poor way to create formal proofs. Instead it is probably
better to innovate new approaches so that the proof becomes easier to formalize
and/or the theorem becomes more general. For example, dealing with bound and
free variables is typically considered a solved problem by logicians; however, it is
currently an active field of research for formal mathematics and computer sci-
ence [Aydemir et al., 2005]. I suspect that when mathematicians omit tedious
proofs (such as results about variables and substitution) it is a sign that they are
taking the wrong approach to a problem, or perhaps using the wrong structures.

7.8 Statistics

My proof [O’Connor, 2005c], excluding standard libraries and the library for Pock-
lington’s criterion [Caprotti and Oostdijk, 2001], consists of 50 source files, 7 223
lines of specifications, 38 469 lines of proof, and 1 288 796 total characters. The
size of the gzipped tarball (gzip -9) of all the source files is 149 698 bytes, which
is an estimate of the information content of my proof.
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Chapter 8

Introduction

Several mathematical theorems rely on numerical computation of real number
values in their proofs. One example is the disproof of the Mertens conjec-
ture [Odlyzko and teRiele, 1985]. The Mertens conjecture, which implies the Rie-
mann hypothesis, claims that the partial sums of the Möbius function are bounded
in absolute value by the square root function. Odlyzko and te Riele disproved the
Mertens conjecture. Their disproof involves computing the first hundred decimal
digits of the first two thousand zeros of the Riemann zeta function.

Another example is Hales’s famous proof of the Kepler conjecture [Hales, 2002].
This proof involves verifying thousands of nonlinear inequalities over the real num-
bers. These inequalities were verified by special purpose software. Unfortunately,
the peer review process has failed to fully accept the proof as correct. After four
years, the twelve referees could only claim to be 99% certain of the correctness of
the proof [Hales, 2006]. In response, Hales has started the Flyspeck project [Hales,
2006], a project to create a computer-verified proof of the Kepler conjecture. A full
computer-verified proof will verify both the mathematical and computational parts
of the proof together.

Many other proofs rely on real number computation. All of these proofs require a
verified implementation of real number arithmetic before these proofs can be veri-
fied by a computer. By verified implementation, I mean a software verified library
of continuous functions on R where computations can be performed to arbitrary
precision. One such library has been created by Cruz-Filipe as a product of his
software verified constructive proof of the fundamental theorem of calculus [Cruz-
Filipe, 2003]. Because Cruz-Filipe’s proof is constructive, the functions in his
library can be evaluated. However, this construction was not designed with execu-
tion in mind, so unfortunately, evaluation is not practical [Cruz-Filipe and Spitters,
2003]. Therefore, if one wants to handle the problems encountered in the aforemen-
tioned mathematical proofs, a new library is needed.

This part develops a new constructive implementation of real numbers via a new
characterization of metric spaces (Chapter 9). A generic method of completing
metric spaces is developed and satisfies the properties of a monad (Chapter 10).
This generic monadic interface is simple and elegant to use, and at the same time
practical enough to run the computations needed for proofs. This work contributes
not only to the Flyspeck project, but to any project requiring a verified library of
functions for exact real arithmetic.
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Three different complete metric spaces are developed:

• Chapter 11 develops the real numbers as the completion of the rational num-
bers. This chapter is based on my publication, “Certified Exact Transcen-
dental Real Number Computation in Coq” [O’Connor, 2008a].

• Chapter 12 develops integrable functions as the completion of rational step
functions. This chapter is based on a paper by Bas Spitters and myself enti-
tled, “A computer verified, monadic, functional implementation of the inte-
gral” [O’Connor and Spitters, 2009].

• Chapter 13 develops compact sets as the completion of finite sets. This
chapter is based on my publication, “A Computer Verified Theory of Com-
pact Sets” [O’Connor, 2008b].

The purpose of this work is to formally verify the proofs presented in this part
using a proof assistant. To this end, I have included many theorems with detailed
proofs in order to help ease the formalization process. Those readers who are only
interested in the data structures and operations may wish to skip over the details of
the proofs. All of the theorems in this part have been verified by the Coq proof
assistant except where otherwise noted.

8.1 Notation

The strictly positive rationals are denoted by Q+, while the non-negative rationals
are denoted by Q0+. The strictly positive rationals with positive infinity are
denoted by Q∞

+ . Similar notation is used for reals and natural numbers. The injec-
tion ι: Q+ ⇒ Q∞

+ and some other similar injections will be omitted and their use
will be implicit.

I use the notation f (n)(x) to express the operation f iterated n-times, while fn(x)
means (f(x))n. However, I will follow tradition and use f−1 to indicate the inverse
function of f , despite the fact that f (−1) would actually be more appropriate.

I will sometimes use the notation a
⊥b

for min (a, b) and a
⊤b

for max (a, b), particu-

larly when the primary focus is on the a expression. I will use the notation a
⊤

⊥

b

c

for

min (max (a, b), c). In order to avoid confusion, this “clamp” notation will only be
used in contexts where b ≤ c since min (max (a, b), c) = max (min (a, c), b) in this
case.

The notation ⌈a⌉ and ⌊a⌋ is used to denote ceiling(a) and floor(a) respectively. The
notation ⌊a⌉ is used to denote round(a) which rounds a to the nearest integer. I do
not state which integer 1

2
is rounded to; the proofs only rely on the fact that ⌊a⌉ is

an integer such that |a−⌊a⌉| ≤ 1

2
.

Generally speaking, I will use different styles of variables for different types in
accordance with the following table.
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Variables Types

a, b, c rational numbers or points in an incomplete metric space
n,m natural numbers
x, y, z real numbers or points in a complete metric space
f , g, h functions or function-like values
X,Y , Z types and type-like values, especially for metric spaces
ε, δ, γ values of type Q+ or Q∞

+

A,B, C ,� predicates or other set-like values
A,B,C,� type constructors, especially for functors and monads

Table 8.1. A guide to variable name usage

However, I may violate this convention when necessary for clarity.

8.2 Rational Numbers

The rational numbers Q form the foundation for my metric space development.
They play a particularly crucial role in my development of the real numbers (see
Chapter 11). It is worth taking a detailed look at how they can be represented.

There are two obvious ways to represent Q. The first way to define Q is as a setoid
on Z×N+ where

(n1, d1)≍Q (n2, d2)4 n1 d2 =Z n2 d1.

The pair (n, d) represents the rational number n

d
. The second way to define Q is as

a dependent pair ∃p:Z×N+. coprime(π1(p), π2(p)). In this case, one can use regular
equality because coprime is a classical predicate, meaning that coprime(x, y) has at
most one proof (see Section 2.2.10). In either case, a binary representation for Z

and N is used to allow for efficient arithmetic operations.

There are other ways of representing Q. Most notably, Q can be defined using a
continued fractions representation [Niqui, 2004]. Using this representation, there is
no need to use a setoid relation nor is there a need to select canonical elements
using a dependent pair. However, there are some efficiency issues with the con-
tinued fraction representation, so I did not choose to use it for my work.

The Coq standard library represents Q using the setoid representation. The
problem with the dependent pair representation is that every operation must
reduce the numerator and denominator to lowest terms before returning it. This
reduction is effectively a GCD computation, and doing it after every operation can
become expensive. However, never reducing the numerator and denominator can
eventually lead to computations involving very large integers, which slows down
evaluation. The standard library does not do any reduction after any of the stan-
dard operations. The library instead proves a function Qred that the user can call
to reduce the pair to lowest terms. This leaves it to the user to decide when to
reduce and when not to reduce.
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I made very little use of Qred in my implementation. In Section 11.5.1, I define a
compress function that reduces the size of numerators and denominators used
during real number computation, thus avoiding running a GCD computation. How-
ever, I do not apply the compress function after my operations. Similar to the Coq
standard library, I leave it up to the user to decide when to call compress to do the
reduction.

I found that representing Q+ as a setoid on N+ × N+ worked better than repre-
senting it as the dependent pair ∃q: Q.0 < q. I defined an implicit injection ι:
Q+ ⇒ Q, which makes it easy to use positive rationals in contexts requiring a
rational number.

I will keep the representation of Q and Q+ abstract for the discussion within this
thesis. I will use the equals symbol on rational numbers (=Q ) with the under-
standing that one might use a setoid equality for one’s representation instead.

I believe my work could be redeveloped using dyadic rational numbers (rational
number whose denominator is a power of 2) instead of Q. This might be more effi-
cient at the cost of making the reciprocal operation (Section 11.3) and some other
operations more complicated to define.

8.3 Regular Functions of Rationals

Abstractly, real numbers can be defined as any complete, Archimedean, ordered
field; however, in order to show that such a structure exists, it is necessary to pro-
duce a model of the real numbers. One common model of the constructive real
numbers consists of equivalence classes of Cauchy sequences of rational numbers
with a constructive modulus of convergence [Geuvers and Niqui, 2002].

Bishop and Bridges [Bishop and Bridges, 1985] define the real numbers to be reg-
ular sequences of rational numbers with an equivalence relation.

Definition 8.1. A sequence xn is regular if

∀mn :N+.|xm −xn| ≤ 1

m
+

1

n
.

Two regular sequences x and y are equivalent (x≍ y) if

∀n :N+. |xn − yn| ≤ 2

n
.

Under this equivalence relation, regular sequences are isomorphic to Cauchy
sequences. Every regular sequence is a Cauchy sequence, and every Cauchy
sequence can be transformed into a regular sequence by using its modulus of con-
vergence to select a suitable subsequence.
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One can think of a regular sequence as a function that approximates a real number
by taking a positive number n to a rational number xn that is within 1

n
of the real

number the sequence represents. Instead of using such coarse-grained approxima-
tions, one can generalize the concept of regular sequences to regular functions.

Definition 8.2. A function x :Q+⇒Q is regular if

∀ε1 ε2.|x(ε1)− x(ε2)| ≤ ε1 + ε2,

and two regular functions x and y are equivalent if

∀ε. |x(ε)− y(ε)| ≤ 2 ε.

Regular functions are isomorphic to regular sequences. Any regular function can be

transformed into the regular sequence λn: N+.x
(

1

n

)

, and any regular sequence can

be transformed into a regular function that maps ε to some xn such that 1

n
≤ ε.

One can think of a regular function as a function that approximates a real number
by taking a positive rational number ε to a rational number that is within ε of the
real number the function represents. Regular functions allow more fine-grained
approximations than regular sequences allow. This fine control can prevent unnec-
essary over-approximation when doing calculations.

Regular functions, like regular sequences, can be used not only to construct the
reals, but to complete any metric space.
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Chapter 9

Metric Spaces

A traditional definition of a metric space is a set X with a distance function d :
X⇒X ⇒R∞

0+ satisfying certain properties [Burago et al., 2001]; however, the pur-
pose of this part is to define R as the completion of a metric space. This task
requires a definition of metric space that does not presuppose the existence of R.
Given a traditional metric space, one can define a distance relation Bε

X(a, b) 4
d(a, b) ≤ ε where ε : Q+. This distance relation does not depend on R, but it still
completely characterizes the metric space.

Definition 9.1. Given a tuple
(

X, ≍ ,BX
)

, where ≍ is an equivalence relation on
X and BX : Q+ ⇒ X ⇒ X ⇒ ⋆ is a relation respecting the equivalence relation on
X , meaning that

a0≍ a1⇒ b0≍ b1⇒
(

Bε
X(a0, b0)⇔Bε

X(a1, b1)
)

,

we call
(

X,≍ ,BX
)

a metric space if the following properties hold:

1. ∀aε.Bε
X(a, a)

2. ∀abε.Bε
X(a, b)⇒Bε

X(b, a)

3. ∀abcε1 ε2.Bε1

X(a, b)⇒Bε2

X(b, c)⇒Bε1+ε2

X (a, c) (triangle law)

4. ∀abε.(∀δ.Bε+δ
X (a, b))⇒Bε

X(a, b)

5. ∀ab.(∀ε.Bε
X(a, b))⇒ a≍ b

I use the symbol B for the distance relation because if Bε
X(a) is considered as a

predicate, then the set of points satisfying Bε
X(a) are exactly the points that are

within ε of a. Therefore, Bε
X(a) can be understood as a ball of radius ε around a.

Axioms 1 and 2 state that the distance relationship is reflexive and symmetric.
Axiom 3 is a form of the triangle inequality. Axiom 4 states that Bε

X(a) is a closed
ball. I use closed balls because they are usually classical propositions, so they can
be ignored during evaluation (see Section 2.3.2). For some metric spaces, such as
the real numbers, open balls are defined with existential quantifiers, and their use
would lead to unnecessary computation under strict evaluation [Cruz-Filipe and
Spitters, 2003], which is the evaluation strategy used by Coq’s vm_compute com-
mand (see Section 11.7). Axiom 5 states the identity of indiscernibles.

59



Given this definition of a metric space, the traditional metric can be recovered
(classically) by defining d(a, b)4 inf

{

ε
∣

∣ Bε
X(a, b)

}

—the infimum of the empty set
is taken to be ∞. One can easily show that my definition of a metric space is clas-
sically equivalent to the traditional definition.

My definition of a metric space is more general than the definition given by Bishop
and Bridges [Bishop and Bridges, 1985]. Their definition requires that the distance
between any two points can be computed to any given precision. Given my defini-
tion of a metric space, such a computation may not be possible. For example, if X
is a metric space, then the space of functions E ⇒ X can be given a metric where
Bε

E⇒X(f , g) 4 ∀a. Bε
X(f(a), g(a)) (see Section 10.2). In general, the distance

between two functions is uncomputable under this metric, and Bishop and Bridges
would not consider this a metric space.

Notation 9.2. Sometimes an extended distance relation B̆
X : Q∞

+ ⇒ X ⇒ X ⇒ ⋆

will be used where B̆∞
X

(a, b)4 ⊤ and for ε:Q+, B̆ε
X

(a, b)4 Bε
X(a, b).

It is useful to note that if two points are within ε1 of each other, then they are also
within ε2 of each other whenever ε1<ε2.

Theorem 9.3. For any ε1 and ε2 such that ε1 < ε2, if Bε1

X(a, b) holds then Bε2

X(a,
b) holds.

Proof. Bε2−ε1

X (b, b) holds by reflexivity. Therefore, Bε2

X(a, b) holds by the
triangle law. �

9.1 Uniform Continuity

Definition 9.4. Given two metric spaces
(

X,≍ ,BX
)

and
(

Y ,≍ ,BY
)

, a function

f :X⇒ Y is uniformly continuous with modulus µ :Q+⇒Q∞
+ if

∀abε. B̆µ(ε)
X

(a, b)⇒Bε
Y (f(a), f(b)).

A function f :X⇒ Y is uniformly continuous if there is some µ such that f is uni-
formly continuous with modulus µ.

Notation 9.5. When a function f is uniformly continuous, I will write f : X → Y

using a single-bar arrow. This indicates that f is not just a function, but it is a
dependent tuple

∃(f , µ): (X⇒Y )×
(

Q+⇒Q∞
+ ).∀abε. B̆µ(ε)

X (a, b)⇒Bε
Y (f(a), f(b))
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consisting of a function, its modulus of continuity, and a proof that it is uniformly
continuous.

This structure is a morphism in the category of metric spaces with uniformly con-
tinuous functions between them. When f : X → Y , I will leave the projections
implicit and write f(x) instead of π1(π1(f))(x). (The coercion mechanism in
Coq [The Coq Development Team, 2004] allows the projection function to be
inferred in the same way in the formal proofs.)

This definition of uniform continuity is the same as the usual definition except that
the relation between ε and δ is instead explicitly given by µf.

Notation 9.6. Sometimes an extended function µ̆: Q∞
+ ⇒ Q∞

+ will be used where
µ̆(∞)4 ∞ and for ε :Q+, µ̆(ε)4 µ(ε).

Theorem 9.7. The identity function I is uniformly continuous with modulus I,
and if f : X → Y and g: Y → Z are both uniformly continuous, then the composition
g ◦ f :X→Z is uniformly continuous with modulus µf ◦ µg.

Proof. Easy. �

9.2 Prelength Spaces

In a metric space, just because two points a and b are within l of each other does
not mean that there exist curves of length approaching l that connect these points.
A metric space that has such curves is known as a length space [Burago et al.,
2001]. Since the notion of curves presupposes the real numbers, I introduce the
weaker notion of a prelength space.

Definition 9.8. A prelength space is a metric space such that

∀abεδ1 δ2.ε < δ1 + δ2⇒Bε
X(a, b)⇒∃c.Bδ1

X(a, c)∧Bδ2

X(c, b).

This property implies that if two points a and b are within l of each other, then
there is a path of points connecting a to b with consecutive points within δ of each
other whose total length is less than l+ ε.

Theorem 9.9. In a prelength space, for any a, b, ε, δ0,� , δn−1 such that Bε
X(a, b)

holds and ε < δ0 + � + δn−1, there exist c0, � , cn such that c0 = a, cn = b, and
∀i <n.Bδi

X(ci, ci+1) holds.
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Prelength spaces are quite common. For example, all normed vector spaces are pre-
length spaces. All the metric spaces considered in this thesis are prelength spaces.
A prelength space is also known as a metric space with approximate midpoints.

Theorem 9.10.
(

Q,= ,BQ
)

is a prelength space where Bε
Q(a, b)4 |a− b| ≤ ε.

9.3 Classification of Metric Spaces

There is a hierarchy of classes that metrics can belong to. The strongest class of
metrics is the decidable metrics.

Definition 9.11. A decidable metric is a distance relation BX such that

∀abε.Bε
X(a, b)∨¬Bε

X(a, b).

The constructive disjunction here means that a constructive proof contains an algo-
rithm for computing whether two points are within ε of each other or not. The
metric on Q has this property; however, this disjunction cannot be constructed for
the metric on R.

The next strongest class of metrics is what I call the located metrics.

Definition 9.12. A located metric is a distance relation BX such that

∀abεδ.δ < ε⇒Bε
X(a, b)∨¬Bδ

X(a, b).

This is similar to being decidable, but there is a little extra wiggle room. If a and b
are between δ and ε far apart, then the algorithm has the option of returning either
a proof of Bε

X(a, b) or ¬Bδ
X(a, b). This extra flexibility will allow us to prove that

R is a located metric. For some metrics even this disjunction cannot be con-
structed. In general, the located metric property cannot be constructed for the
standard sup-metric on functions between metric spaces (see Section 10.2).

Theorem 9.13. Every decidable metric is also a located metric.

Proof. This follows from Theorem 9.3. �

The weakest class of metrics in this hierarchy is the stable metrics.

Definition 9.14. A stable metric is a distance relation BX such that

∀abε.¬¬Bε
X(a, b)⇒Bε

X(a, b).
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Theorem 9.15. Every located metric is a stable metric.

Proof. Suppose that BX is a located metric. Assume that ¬¬Bε
X(a, b) holds. Let

δ be arbitrary. Because BX is a located metric, either Bε+δ
X (a, b) holds, or ¬Bε

X(a,

b) holds. However, it is impossible that ¬Bε
X(a, b) holds by our assumption. So

Bε+δ
X (a, b) holds. Since δ was arbitrary, Bε

X(a, b) holds as required. �

Note that when X has a stable metric, the equivalence relation between points
(a ≍ b) is stable, meaning that ∀ab.¬¬(a ≍ b) ⇒ a ≍ b. This follows from the fact
that a≍ b⇔∀ε.Bε

X(a, b).

Although we will discuss the possibility of metrics that are not constructively stable
in Section 13.5, it appears that metric spaces used in practice are stable. The only
place I require that a metric be stable is in Chapter 13, so, for the sake of gener-
ality, I will not assume that my metric spaces are stable in other chapters. Despite
this generality, I believe one should consider making stability an additional axiom
of metric spaces.

9.4 Completion of a Metric Space

One can define regular functions over any metric space X by using the distance
relation.

Definition 9.16. A function x :Q∞
+ ⇒X is regular if

∀ε1 ε2:Q+.Bε1+ε2

X (x(ε1), x(ε2)).

Two regular functions x and y are equivalent (x≍ y) if

∀ε1 ε2:Q+.Bε1+ε2

X (x(ε1), y(ε2)).

Notice how this definition of equivalence means that x: Q∞
+ ⇒ X is a regular func-

tion if and only if x≍ x.

Call the type of regular functions over X the completion of X or C(X).

Definition 9.17. C(X)4 ∃x:Q∞
+ ⇒X.∀ε1 ε2:Q+.Bε1+ε2

X (x(ε1), x(ε2)).

Define the distance relation on C(X) as follows.

Definition 9.18. Bε
C(X)

(x, y)4 ∀δ1 δ2:Q+.Bδ1+ε+δ2

X (x(δ1), y(δ2)).
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Theorem 9.19. The distance relation BC(X) respects the equivalence relation on
C(X).

Proof. Given x0, x1, y0, y1: C(X), suppose that x0 ≍ x1, y0 ≍ y1, and Bε
C(X)

(x0, y0)

hold. Let δ1, δ2, γ: Q+ be arbitrary. We have that Bδ1+
γ

4

X
(

x1(δ1), x0

( γ

4

))

and

B γ

4
+δ2

X
(

y0
( γ

4

)

, y1(δ2)
)

hold. We also have that B γ

2
+ε

X
(

x0

( γ

4

)

, y0
( γ

4

))

holds. There-

fore, Bγ+δ1+ε+δ2

X (x1(δ1), y1(δ2)) holds. Because γ was arbitrary, we get that

Bδ1+ε+δ2

X (x1(δ1), y1(δ2)) holds as required to show that Bε
C(X)

(x1, y1) holds.

By the symmetry of ≍ , we also get that Bε
C(X)

(x1, y1) ⇒ Bε
C(X)

(x0, y0) as
required. �

The following theorem shows that the completion of a metric space is a metric
space.

Theorem 9.20. If
(

X, ≍ , BX
)

is a metric space, then
(

C(X), ≍ , BC(X)
)

is a

metric space.

Proof.

1. Consider arbitrary δ1 and δ2. By Theorem 9.3, Bδ1+δ2+ε
X (x(δ1), x(δ2)) holds.

Therefore, Bε
C(X) is reflexive.

2. Bε
C(X) is symmetric because Bε

X is symmetric.

3. Suppose that Bε1

C(X)
(x, y) and Bε2

C(X)
(y, z) hold. Let γ be arbitrary. Then

Bδ1+ε1+
γ

2

X
(

x(δ1), y
( γ

2

))

and B γ

2
+ε2+δ2

X
(

y
( γ

2

)

, z(δ2)
)

hold. Therefore,

Bδ1+ε1+ε2+δ2+γ
X (x(δ1), y(δ2)) holds. Since γ was arbitrary, Bε1+ε2

C(X)
(x, y)

holds.

4. Given ε, x, and y, suppose that ∀γ. Bε+γ
C(X)

(x, y) holds. Therefore, ∀γδ1 δ2,
Bδ1+ε+δ2+γ

X (x(δ1), y(δ2)) holds. Then ∀δ1 δ2. Bδ1+ε+δ2

X (x(δ1), y(δ2)) holds,

which is the same as Bε
C(X)

(x, y).

5. Given x and y, suppose that ∀ε. Bε
C(X)

(x, y) holds. For any ε, δ1, and δ2,
Bδ1+ε+δ2

X (x(δ1), y(δ2)) holds. Then Bδ1+δ2

X (x(δ1), y(δ2)) holds because ε was
arbitrary. Therefore, x≍ y.

�

The following are useful theorems about the distance relation on regular functions.

Theorem 9.21. If Bε
X(x(ε1), y(ε2)) holds, then Bε1+ε+ε2

C(X)
(x, y) holds.

Proof. Let δ1 and δ2 be arbitrary. Bδ1+ε1

X (x(δ1), x(ε1)) and Bε2+δ2

X (y(ε2), y(δ2))

hold. Therefore, Bδ1+ε1+ε+ε2+δ2

X (x(δ1), y(δ2)) holds. �
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Corollary 9.22. If Bε0

X(x(ε1), b) holds, then Bε0+ε1

C(X)
(

x, b̂
)

holds where b̂ is the reg-

ular function b̂4 λε.b.

Proof. By Theorem 9.21 Bε0+ε1+ε2

C(X)
(

x, b̂
)

holds for every ε2. Therefore,

Bε0+ε1

C(X)
(

x, b̂
)

holds. �

The following theorem shows that the distance relation, Bε
C(X)

(x, y) is equivalent
to ∀δ.Bε+2δ

X (x(δ), y(δ)).

Theorem 9.23. For any ε, if ∀δ.Bε+2δ
X (x(δ), y(δ)) holds, then Bε

C(X)
(x, y) holds.

Proof. For any δ, B
ε+

δ

2

X
(

x
(

δ

4

)

, y
(

δ

4

))

holds. By Theorem 9.21, Bε+δ
C(X)

(x, y)

holds. Since δ was arbitrary, Bε
C(X)

(x, y) holds. �

The following theorem shows that the completion of a prelength space is a pre-
length space.

Theorem 9.24. If
(

X,≍ ,BX
)

is a prelength space, then
(

C(X),≍ ,BC(X)
)

is a

prelength space.

Proof. By Theorem 9.20, all that remains is to show that the prelength space
property is preserved. Suppose that ε < δ1 + δ2, and Bε

C(X)
(x, y) holds. Let γ 4

min
(

δ1

2
,

δ2

2
,

δ1 + δ2− ε

5

)

. Bε+2γ
X (x(γ), y(γ)) holds. There is some c such that

Bδ1−γ
X (x(γ), c) and Bδ2−γ

X (c, y(γ)) hold. So Bδ1

C(X)
(x, ĉ) and Bδ2

C(X)
(ĉ , y) holds by

Corollary 9.22 where ĉ4 λε.c. �

The completion operation preserves the located metric and stable metric properties.

Theorem 9.25. If X is a located metric, then C(X) is a located metric.

Proof. Let xy : C(X) be arbitrary, and let δε : Q+ be such that δ < ε. We need to

show that Bε
C(X)

(x, y) ∨ ¬Bδ
C(X)

(x, y). Let γ 4 ε − δ

5
. Because X is located, then

either Bδ+3γ
X (x(γ), y(γ)) holds or ¬Bδ+2γ

X (x(γ), y(γ)) holds.

Suppose that Bδ+3γ
X (x(γ), y(γ)) holds. Then Bδ+5γ

C(X)
(x, y) holds by Theorem 9.21,

which is the same as Bε
X(x, y) as required.

Suppose that ¬Bδ+2γ
X (x(γ), y(γ)) holds. Then, by Theorem 9.21, ¬Bδ

C(X)
(x, y)

holds as required. �

Theorem 9.26. If X is a stable metric, then C(X) is a stable metric.
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We cannot expect to prove that completion operation preserves decidable metrics.
The most obvious example is that Q is a decidable metric, while it is known that
one cannot construct the decidable metric property for C(Q) (which is R).

Typically the completion of a space X is denoted by X̄ . Because I wish to empha-
size the monadic property of the completion, I use Fraktur C.

9.5 Remarks

9.5.1 Infinite Distance

Often the definition of a metric space requires the distance between two points
always to be finite. Because I will want to consider the space of all uniformly con-
tinuous functions between two metric spaces as a metric space in Section 10.2, I use
the more liberal definition.

9.5.2 Dedekind Cuts

Instead of using the distance relation BX as defined above, another possibility
would be to use a relation of type X⇒X⇒Q+ ⇒ ⋆. This is just a rearrangement
of the parameters to BX, so it does not appear to make a difference; however, you
can also view it as a function of two parameters that returns a unary predicate on
Q+. Axiom 4 and Theorem 9.3 imply that this predicate forms a closed uppercut
of Q+, thus the result of the function is a Dedekind cut. Define D∞

0+ to be the non-
negative Dedekind extended reals, or more specifically, the dependent record type
of closed upper cuts of Q+, including the empty cut (meaning ∞) and the full cut
(meaning 0). One could then define a metric space by a metric function dX of type
X ⇒ X ⇒ D∞

0+ (and adjust the axioms of a metric space appropriately). Only a
small amount of theory about the Dedekind reals is needed, addition but not multi-
plication. Cauchy reals (R) would then be defined as a metric space whose distance
function returns a non-negative Dedekind real.

I attempted this approach. I tried to define equality and addition on D∞
0+ to show

that
(

D∞
0+, ≍D , +D

)

is a monoid. This would have allowed me to reuse existing

theorems about monoids that have been developed in the C-CoRN library. Unfor-
tunately this does not work in Coq 8.0 because the fact that D∞

0+ is a predicate
forces D∞

0+ into a higher universe level than is allowed by the C-CoRN
library [CoRN, 2008]. Coq 8.1 allows more flexibility in universe levels for instances
of inductive types. This could help alleviate some of the universe issues; however, I
still fear that trying to use C-CoRN monoids for predicates will never work. To
avoid universe level issues, I use the distance relation BX as given in Definition 9.1,
and I do not use Dedekind reals at all.
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9.5.3 Identity of Indiscernibles

The distance relation can be used to define equality because

(

∀ε.Bε
X(a, b)

)

⇔ a≍ b

holds. If the type X does not come with an equivalence relation, then an equiva-
lence relation can be defined from the distance relation. This would make Axiom 5
more of a definition than an axiom.

Usually a type X comes equipped with its own equivalence relation used in other
theorems. This is the case for Q. Therefore I use the existing equivalence relation
in order to be compatible with those theorems. Otherwise I would end up con-
stantly swapping between two equivalent equivalence relations.

9.5.4 Modulus of Continuity

My definition of modulus of continuity maps ε to δ, while the usual mathematical
definition of modulus of continuity maps δ to ε. The inverse of the usual definition
bounds my definition of the modulus of continuity. My definition of the modulus of
continuity is the standard one for constructive analysis, and is essentially the same
as Bishop and Bridges’s definition [Bishop and Bridges, 1985].

9.5.5 Prelength Space

A prelength space is a weaker notion than a length space. For example, the ratio-
nals are not a length space because no two points can be connected by a continuous
curve; however, the rationals are a prelength space. I chose the name prelength
space because of an analogy with precompact spaces. When a precompact space is
completed it becomes a compact space; when a prelength space is completed it
becomes a length space.

A possible alternative definition for prelength space would be to use the classical
existential quantifier:

∀abεδ1 δ2.ε < δ1 + δ2⇒Bε
X(a, b)⇒∃̃c.Bδ1

X(a, c)∧Bδ2

X(c, b)

The witness c is never used in any construction in my work. However, I will stick
with the constructive existential for this part. If one uses the classical quantifier,
one may need to add the extra assumption that the metric space has a
stable metric to some of the theorems.

In the Coq development, I used the Prop based existential quantifier. This special
quantifier has the same constructive introduction rules that the constructive exis-
tential quantifier has, but the elimination rule is restricted to be more like a clas-
sical quantifier. The dependent pair is never allowed to be eliminated when con-
structing a value of a Set kind (see Section 2.3.2). It can only be eliminated when
constructing other Prop-kinded values (such as proofs of Bε

X(a, b)).
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9.5.6 Notation for Projections of Dependent Records

Recall that metric spaces (Definition 9.1) and uniformly continuous functions (Defi-
nition 9.4) are represented by dependent record types. The distance relation B is
actually a projection function that takes a metric space X and returns the distance
relation BX. I won’t distinguish between the type Q and the metric space

(

Q, = ,

BQ
)

; I will denote both as Q. In fact, because I declared the dependent record
Q_as_MetricSpace as a Canonical Structure [The Coq Development Team,
2004], Coq is also able to infer the correct metric space from the type Q. In partic-
ular, I will write the extraction of the distance relationship from a metric space as

B
(

Q,=,BQ
)

as simply BQ. This means that the notation BQ may either denote the
actual distance relationship on Q as defined in Theorem 9.10, or it may denote the
projection function for the distance relationship applied to the metric space

(

Q,= ,

BQ
)

. This ambiguity in my notation poses no problem because B
(

Q,=,BQ
)

reduces

to BQ.

Similar notation will be used for the modulus of continuity, µf, and other depen-
dent records.

68 Metric Spaces



Chapter 10

Completion Is a Monad

The definition of a monad comes from category theory, but one does not need to
understand the categorical definition of monads in order to use them. Given a type
operation M, a type of morphisms, and three functions, unit : X → M(X), map :
(X → Y ) ⇒ (M(X) → M(Y )), and join : M(M(X)) → M(X) that satisfy the seven
laws given subsequently in Section 10.1, the dependent record (M, unit,map, join) is
a monad . The completion monad, C, operates on metric spaces with uniformly con-
tinuous functions. Notice that, although map is required to take and return uni-
formly continuous functions (see Notation 9.5), it is not required to be uniformly
continuous itself in order to form a monad. Later we will see that map is in fact
uniformly continuous (Theorem 10.31).

The unit function is the injection of X into C(X).

Definition 10.1. unit(a)4 λε.a.

Notation 10.2. I will sometimes denote unit(a) by â.

Theorem 10.3. For any a : X, unit(a) is a regular function, and unit is uniformly
continuous with modulus I.

The following two theorems show that the metric is preserved under this injection,
and it is sound to think of x(ε) as an approximation of x within ε.

Theorem 10.4. For any a, b, and ε, Bε
X(a, b) holds if and only if Bε

C(X)
(

â , b̂
)

holds.

Theorem 10.5. For any ε, Bε
C(X)

(

x, x(ε)
)

holds.

Proof. Let δ1 and δ2 be arbitrary. Because x is a regular function, Bδ1+ε
X (x(δ1),

x(ε)) holds, but this is the same as Bδ1+ε
X

(

x(δ1), x(ε)(δ2)
)

. By Theorem 9.3,

Bδ1+ε+δ2

X
(

x(δ1), x(ε)(δ2)
)

holds as required. �

The function join : C(C(X)) → C(X) comes from the proof that the completion of a
metric space is complete.
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Definition 10.6. join(x)4 λε.x
( ε

2

)( ε

2

)

.

Theorem 10.7. For any x : C(C(X)), join(x) is a regular function.

Proof. Let ε1 and ε2 be arbitrary. Because x is a regular function, B ε1
2

+
ε2
2

C(X) (
x
( ε1

2

)

,

x
( ε2

2

))

holds. By Theorem 10.5, B εi
2

C(X)

(

x
( εi

2

)

, x
( εi

2

)( εi

2

)

)

holds, so all together

Bε1+ε2

C(X)

(

join(x)(ε1), join(x)(ε2)

)

holds. By Theorem 10.4, Bε1+ε2

X (join(x)(ε1),

join(x)(ε2)) holds, so join(x) is a regular function. �

Theorem 10.8. The function join is uniformly continuous with modulus I.

Proof. Let ε and δ be arbitrary, and suppose that x1 and x2 are such that Bε(x1,

x2) holds. We know that B δ

2

C(X)

(

xi

(

δ

2

)

, xi

(

δ

2

)(

δ

2

)

)

holds by Theorem 10.5 and

hence B δ

2

C(C(X))





xi

(

δ

2

)

, xi

(

δ

2

)(

δ

2

)





holds by Theorem 10.4. Also B δ

2

C(C(X))

(

xi,

xi

(

δ

2

)

)

holds by Theorem 10.5. Together this means that Bδ
C(C(X))





xi,

xi

(

δ

2

)(

δ

2

)





holds. Therefore, Bε+2δ
C(C(X))

(

join(x1)(δ), join(x2)(δ)

)

holds. By two

applications of Theorem 10.4, Bε+2δ
X (join(x1)(δ), join(x2)(δ)) holds. By The-

orem 9.23, Bε
C(X)

(join(x1), join(x2)) holds as required. �

The function map : (X → Y )⇒ (C(X) → C(Y )) lifts uniformly continuous functions
on the base spaces to uniformly continuous functions on the completed spaces.

Definition 10.9. map(f)(x)4 λε.f
(

x
(

µf (ε)

2

))

.

Notation 10.10. I will sometimes write map(f) as f̄.

Theorem 10.11. If f : X → Y and x : C(X) and δ and ε are such that δ ≤ µf(ε)

2
,

then Bε
Y
(

f(x(δ)), f̄ (x)(ε)
)

.

Proof. Because x is a regular function, B̆µf(ε)
X

(

x(δ), x
(

µf(ε)

2

))

holds by The-

orem 9.3. Because f is uniformly continuous, Bε
Y
(

f(x(δ)), f
(

x
(

µf(ε)

2

)))

holds as
required. �

Theorem 10.12. If f :X→Y and x : C(X), then f̄ (x) is a regular function.
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Proof. Consider arbitrary ε1 and ε2. Let δi 4 µf(εi). Without loss of generality,

assume that δ1 ≤ δ2. By Theorem 10.11, Bε2

Y
(

f
(

x
(

δ1

2

))

, f̄ (x)(ε2)
)

hold. By The-

orem 9.3, Bε1+ε2

Y
(

f̄ (x)(ε1), f̄ (x)(ε2)
)

holds as required. �

Theorem 10.13. The function f̄ is uniformly continuous with modulus λε.
µf(ε)

2
.

Proof. Let x, y, and ε be such that B̆µf(ε)

2

C(X)
(x, y) holds. Let δ 4 µf(ε)

4
. Consider

arbitrary ε1 and ε2. Let δi 4 µf(εi)

2
. Let δi

′ 4 min (δ, δi). Because x is a regular

function, B̆µf(ε1)

2
+δ1

′

X
(

x
(

µf(ε1)

2

)

, x
(

δ1
′
)

)

holds. Therefore, B̆µf(ε1)
X

(

x
(

µf(ε1)

2

)

, x
(

δ1
′
)

)

holds. Hence, Bε1

Y
(

f̄ (x)(ε1), f
(

x
(

δ1
′
)))

holds because f is uniformly continuous.

Similarly, Bε2

Y
(

f(y(δ2
′)), f̄ (y)(ε2)

)

holds.

By our hypothesis, B̆
δ1
′+

µf(ε)

2
+δ2

′

X
(

x
(

δ1
′
)

, y
(

δ2
′
))

holds, and hence B̆µf(ε)
X

(

x
(

δ1
′
)

,

y
(

δ2
′
))

holds. Again, because f is uniformly continuous, Bε
Y
(

f
(

x
(

δ1
′
))

, f
(

y
(

δ2
′
)))

holds. Therefore, Bε1+ε+ε2

Y
(

f̄ (x)(ε1), f̄ (y)(ε2)
)

holds as required. �

There is an alternate definition for map that is more efficient.

Definition 10.14. map′(f)(x) 4 f ◦ x ◦ µf .

However, there is a catch. The functions map and map′ are only equivalent when X
is a prelength space. Consider a case when X is not a prelength space. Let X be
the space {−1} ∪

{

n−1
∣

∣ n :N+
}

and Y be the space {−2} ∪
{

n−1
∣

∣ n :N+
}

with the
induced metrics. The function f : X → Y sending −1 to −2 and n−1 to n−1 is uni-

formly continuous with modulus λε. ε
⊥1

. Consider the regular function x that sends
ε to −1 when 1 ≤ ε and sends ε to some n−1 ≤ ε when ε < 1. In this case,
map′(f)(x) is not a regular function.

Theorem 10.15. Given f : X → Y where X is a prelength space and Y is a metric
space, consider arbitrary a, b, ε0,� , εn−1. Let δi4 µf(εi), δ4 δ0 +� + δn−1, and

ε4 ε0 +� + εn−1. If B̆δ
X

(a, b) holds, then Bε
Y (f(a), f(b)) holds.

Proof. Let εn be arbitrary, and let δn4 µf(εn). By Theorem 9.9, there are c0, � ,
cn+1 such that B̆δi

X
(ci, ci+1) holds, a = c0, and b = cn+1. By uniform continuity,

Bεi

Y (f(ci), f(ci+1)) holds. Thus Bε+εn

Y (f(a), f(b)) holds. Since εn was arbitrary,
Bε

Y (f(a), f(b)) holds as required. �

Theorem 10.16. If f :X→ Y where X is a prelength space and Y is a metric space
and x: C(X), then map′(f)(x) is a regular function.

Proof. Consider arbitrary ε1 and ε2. Let δi4 µf(εi). Because x is a regular func-
tion, B̆δ1+δ2

X (x(δ1), x(δ2)) holds. By Theorem 10.15, Bε1+ε2

Y (f(x(δ1)), f(x(δ2)))

holds, which is the same as Bε1+ε2

Y (map′(f)(ε1),map′(f)(ε2)) as required. �
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Theorem 10.17. The function map′(f) is uniformly continuous with modulus µf.

Proof. Suppose that B̆µf(ε)
C(X)

(x, y) holds. Let δ4 µf(ε). Consider arbitrary ε1 and

ε2. Let δi 4 µf(εi). Thus B̆δ1+δ+δ2

X
(x(δ1), y(δ2)) holds. By Theorem 10.15,

Bε1+ε+ε2

Y (f(x(δ1)), f(y(δ2))) holds. Therefore, Bε
Y (map′(f)(x), map′(f)(y))

holds. �

Theorem 10.18. For any f : X → Y and x: X, where X is a prelength space,
map′(f)(x)≍map(f)(x).

Proof. Let ε1 and ε2 be arbitrary. Let δi 4 µf(εi). Because x is a regular func-

tion, B̆
δ1+

δ2
2

X
(

x(δ1), x
(

δ2

2

))

holds and hence B̆δ1+δ2

X
(

x(δ1), x
(

δ2

2

))

holds. By The-

orem 10.15, Bε1+ε2

Y
(

f(x(δ1)), f
(

x
(

δ2

2

)))

holds which is the same as

Bε1+ε2

Y (map′(f)(x)(ε1),map(f)(x)(ε2)) as required. �

Notice that map′ not only avoids dividing the modulus by 2 in its definition, it also
avoids dividing by 2 in the modulus of continuity of f̄ . The metric spaces we typi-
cally work with are prelength spaces, so in practice we use map′ instead of map. In
fact, this entire project was developed using map′ first. It was only after
reading “Real numbers and other completions” [Richman, 2008] that I learned how
to write map without requiring the assumption that X is a prelength space.

The function bind : (X → C(Y )) ⇒ (C(X) → C(Y )) is defined in terms of join and
map in the usual way.

Definition 10.19. bind(f)4 join ◦map(f).

Notation 10.20. I will sometimes denote bind(f) as f̌.

Similarly there is an equivalent bind′.

Definition 10.21. bind′(f)4 join ◦map′(f).

10.1 Monad Laws

To prove that completion forms a monad, we need to verify that the seven monad
laws [Wadler, 1995] hold.

Theorem 10.22. Ī≍ I.

Proof. Let x: C(X) be arbitrary. Because x is a regular function, B ε1
2

+ε2

X
(

x
( ε1

2

)

,

x(ε2)
)

holds. Hence Bε1+ε2

X
(

Ī(x)(ε1), I(x)(ε2)
)

holds and Ī(x)≍ I(x) as required. �
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Theorem 10.23. ∀g:X→Y .∀f :Y →Z. f ◦ g ≍ f̄ ◦ ḡ.

Proof. Let ε1, ε2, and x: C(X) be arbitrary. Let δi4 µf(εi). Let γ4 min
(

µg(δ1),

µg

(

δ2

2

))

. By Theorem 10.11, B̆δ2
2

Y
(

g
(

x
( γ

2

))

, ḡ (x)
(

δ2

2

))

holds and hence

B̆δ2

Y
(

g
(

x
( γ

2

))

, ḡ (x)
(

δ2

2

))

holds. From this we know that Bε2

Z
(

f
(

g
(

x
( γ

2

))

,

f̄ ◦ ḡ (x)(ε2)
)

holds.

Again, by Theorem 10.11, Bε1

Z
(

(f ◦ g)
(

x
( γ

2

))

, f ◦ g (x)(ε1)
)

holds. Therefore, by

the triangle law, Bε1+ε2

Z
(

f ◦ g (x)(ε1), f̄ ◦ ḡ (x)(ε2)
)

as required. �

Theorem 10.24. ∀f :X→Y . f̄ ◦ unit≍ unit ◦ f.

Proof. Let ε and x: X be arbitrary. We have f̄ (x̂)(ε) = f(x) and f(x)(ε) = f(x),

so f̄ (x̂)≍ f(x) holds as required. �

Theorem 10.25. ∀f :X→Y . f̄ ◦ join≍ join ◦map(f̄ ).

Proof. Let ε1, ε2, and x: C(C(X)) be arbitrary. Let δ14 µf(ε1), δ24 µf

( ε2

2

)

, and

δ4 min
(

δ1

4
,

δ2

8

)

. By Theorem 10.5, B̆δ1
4

C(C(X))

(

x
(

δ1

4

)

, x

)

holds. By Theorem 10.4

and Theorem 10.5, B̆δ1
4

C(C(X))





x
(

δ1

4

)(

δ1

4

)

, x
(

δ1

4

)





holds. Therefore

B̆δ1
2

C(C(X))





x
(

δ1

4

)(

δ1

4

)

, x





holds. Because δ ≤ δ1

4
, B̆δ1

2

C(C(X))

(

x, x(δ)(δ)

)

holds by

similar reasoning. This means that B̆δ1

X
(

x
(

δ1

4

)(

δ1

4

)

, x(δ)(δ)
)

holds by the

triangle law and Theorem 10.4. Because f is uniformly continuous,

Bε1

Y
(

f
(

x
(

δ1

4

)(

δ1

4

))

, f(x(δ)(δ))
)

holds.

Because δ ≤ δ2

8
, we can conclude that B̆δ2

4

C(C(X))

(

x(δ)(δ), x

)

holds by reasoning sim-

ilar to the above. We can also conclude that B̆3δ2
4

C(C(X))





x, x
(

δ2

4

)(

δ2

2

)





holds by

the same kind of argument. Again, by the triangle law and Theorem 10.4,

B̆δ2

X
(

x(δ)(δ), x
(

δ2

4

)(

δ2

2

))

holds. Because f is uniformly continuous,

B ε2
2

Y
(

f(x(δ)(δ)), f
(

x
(

δ2

4

)(

δ2

2

)))

holds, and hence Bε2

Y
(

f(x(δ)(δ)),

f
(

x
(

δ2

4

)(

δ2

2

)))

holds.

By putting these two results together, we get Bε1+ε2

Y
(

f
(

x
(

δ1

4

)(

δ1

4

))

,

f
(

x
(

δ2

4

)(

δ2

2

)))

, which is exactly Bε1+ε2

Y
(

f̄ (join(x))(ε1), join(map
(

f̄
)

(x))(ε2)
)

as

required. �
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Theorem 10.26. join ◦ unit≍ I.

Proof. Let ε1, ε2, and x: C(X). be arbitrary. Since x is a regular function,
B ε1

2
+ε2

X
(

x
( ε1

2

)

, x(ε2)
)

holds and therefore Bε1+ε2

X
(

x
( ε1

2

)

, x(ε2)
)

holds. But this is

exactly Bε1+ε2

X (join(x̂)(ε1), I(x)(ε2)) as required. �

Theorem 10.27. join ◦ unit≍ I.

Proof. Let ε1, ε2, and x: C(X). be arbitrary. Since x is a regular function,
B ε1

4
+ε2

X
(

x
( ε1

4

)

, x(ε2)
)

holds and therefore Bε1+ε2

X
(

x
( ε1

4

)

, x(ε2)
)

holds. But this is

exactly Bε1+ε2

X (join(unit(x))(ε1), I(x)(ε2)) as required. �

Theorem 10.28. join ◦ join≍ join ◦ join.

Proof. Let ε1, ε2, and x: C(C(C(X))) be arbitrary. Since x is a regular function,

B ε1
4

+
ε2
4

C(C(X))(
x
( ε1

4

)

, x
( ε2

4

))

holds. This means that B ε1
2

+
ε2
2

C(X) (
x
( ε1

4

)( ε1

4

)

, x
( ε2

4

)( ε2

4

))

holds, which in turn means B 3ε1
4

+ε2

X
(

x
( ε1

4

)( ε1

4

)( ε1

4

)

, x
( ε2

4

)( ε2

4

)( ε2

2

))

holds. There-

fore Bε1+ε2

X
(

x
( ε1

4

)( ε1

4

)( ε1

4

)

, x
( ε2

4

)( ε2

4

)( ε2

2

))

holds, but this is exactly

Bε1+ε2

X (join(join(x))(ε1), join(join(x))(ε2)) as required. �

Twice completing a metric space is isomorphic to completing it once,
C(C(X))↔C(X). A monad with this property is called an idempotent monad . The-
orem 10.26 gives half of this isomorphism. The following theorem (which is not a
monad law) completes this isomorphism.

Theorem 10.29. unit ◦ join≍ I.

Proof. Let ε1, ε2, δ1, and δ2 be arbitrary. Let x: C(C(X)) be arbitrary. Because x

is a regular function, Bδ1+ε2+δ2

X
(

x
(

δ1

2

)(

δ1

2

)

, x(ε2)(δ2)
)

holds. Hence

Bδ1+ε1+ε2+δ2

X (join(x)(δ1), x(ε2)(δ2)) holds. Therefore Bδ1+ε1+ε2+δ2

X
(

join(x)(ε1)(δ1),

x(ε2)(δ2)
)

holds, which means that unit(join(x))≍ x as required. �

10.2 Lifting Binary Functions

The function map can be used to lift unary functions from X→ Y to C(X)→ C(Y );
however, one also wants to lift multi-argument functions such as binary functions.
One can lift curried binary functions on base spaces to curried functions on com-
pleted spaces, but one first needs to consider the space of uniformly continuous
functions as a metric space. This is done using the supremum metric.
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Theorem 10.30. For any two metric spaces (X, ≍ , BX) and (Y , ≍ , BY ), the

space of uniformly continuous functions from X to Y, (X → Y , ≍ , BX→Y ), is a

metric space where Bε
X→Y (f , g) 4 ∀a, Bε

Y (f(a), g(a)) and with the equivalence

relation f ≍ g4 ∀a.f(a)≍ g(a).

Proof. All the properties of BX→Y follow directly from the same properties for
BY . �

Unfortunately, the space of uniformly continuous functions between two prelength
spaces is not necessarily a prelength space. Consider the space of curves on the unit
circle, [0,1] → S1. Consider two curves connecting two points where one goes clock-
wise and the other goes counter-clockwise. If [0,1] → S1 were a prelength space,
then there would be a curve about halfway between these two curves; however,
there is no such curve.

Fortunately, one can still lift curried functions using the more efficient map′,
because the theorem that the result of map′ is a regular function, Theorem 10.16,
requires only that the domain be a prelength space. With curried functions (say
X → (X → X)), it is the range that may not be a prelength space. The domain is
still the prelength space X , so Theorem 10.16 applies.

A monad M is a strong monad when there is a morphism strength : X × M(Y ) →
M(X ×Y ) satisfying particular laws [Moggi, 1989]. In Section 13.1, we will see that
metric spaces are Cartesian, meaning that we can take the cross product of two
metric spaces. We will also see that C is a symmetric monoidal monad, and there-
fore, C is a (commutative) strong monad. If metric spaces formed a Cartesian
closed category, then strength could be used to prove that map is a mor-
phism [Kock, 1972]. Unfortunately, our category of metric spaces is not closed
because evaluation is not uniformly continuous (see Section 10.3.2). Therefore, we
must prove directly that map is uniformly continuous. This is known as functorial
strength.

Theorem 10.31. Let X and Y be metric spaces. Then map : (X → Y ) →
(C(X)→C(Y )) is uniformly continuous with modulus I.

Proof. Let ε be arbitrary. Suppose that f1 f2 : X → Y are such that Bε
X→Y (f1,

f2). Let ε0 and x : C(X) be arbitrary. Let δ0 4 min
(

µf1

( ε0

2

)

, µf2

( ε0

2

))

and a 4
x(δ0). We know that B ε0

2

C(Y )(
fī (x), fī (â)

)

holds by Theorem 10.5 and uniform con-

tinuity. By Theorem 10.24, fī (â) ≍ fi(a). By Theorem 10.4, Bε
C(Y )

(

f1(a), f2(a)
)

holds, so all together Bε+ε0

C(Y )(
f1̄(x), f2̄(x)

)

. Since ε0 and x were arbitrary,

Bε
C(X)→C(Y )(

f1̄, f2̄
)

holds as required. �

Corollary 10.32. Let X be a prelength space and Y a metric space. Then map′ :
(X→Y )→ (C(X)→C(Y )) is uniformly continuous with modulus I.
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We also want to construct the function ap : C(X → Y ) → C(X) → C(Y ), which one
can think of as a function that takes the limit of uniformly continuous functions
(see also Section 12.1.3). Again, if we were in a Cartesian closed category, then we
would be able to define ap using map, but because the category of metric spaces is
not Cartesian closed, we define ap directly.

Definition 10.33. ap(f)(x)4 λε.map
(

f
( ε

2

))

(x)
( ε

2

)

.

Theorem 10.34. For any f : C(X → Y ) and x : C(X), ap(f)(x) is a regular func-
tion.

Proof. Let ε1 and ε2 be arbitrary. Let fi 4 f
( εi

2

)

. Because f is regular,

B ε1
2

+
ε2
2

X→Y (f1, f2) holds. Let yi4 fī (x). By Theorem 10.31, B ε1
2

+
ε2
2

C(Y )
(y1, y2) holds. By

Theorem 10.5, B εi
2

C(Y )

(

yi

( εi

2

)

, yi

)

holds. All together Bε1+ε2

C(Y )

(

y1
( ε1

2

)

, y2
( ε2

2

)

)

holds. By Theorem 10.4, Bε1+ε2

Y
(

y1
( ε1

2

)

, y2
( ε2

2

))

holds as required. �

Theorem 10.35. For any f : C(X→ Y ), x : C(X), and ε, Bε
C(Y )(

ap(f)(x), f(ε)(x)
)

holds.

Proof. Let ε1 and ε2 be arbitrary. Let f1 4 f
( ε1

2

)

and f2 4 f(ε). Because f is

regular, B ε1
2

+ε
X→Y (f1, f2) holds. By Theorem 10.31, B ε1

2
+ε

C(Y )(
f1̄(x), f2̄(x)

)

holds. By

Theorem 10.5, B ε1
2

C(Y )

(

f1̄(x)
( ε1

2

)

, f1̄(x)

)

and Bε2

C(Y )

(

f2̄(x), f2̄(x)(ε2)

)

hold. All

together Bε1+ε+ε2

C(Y )

(

f1̄(x)
( ε1

2

)

, f2̄(x)(ε2)

)

holds, and by Theorem 10.4,

Bε1+ε+ε2

Y
(

f1̄(x)
( ε1

2

)

, f2̄(x)(ε2)
)

holds. Therefore, Bε
C(Y )(

ap(f)(x), f2̄(x)
)

holds as
required. �

Theorem 10.36. For any f : C(X → Y ), ap(f) is uniformly continuous with mod-

ulus λε.
µ

f
(

ε

3

)

( ε

3

)

2
.

Proof. Let ε be arbitrary, and let δ4 µf
( ε

3

)

( ε

3

)

. Suppose that x1 and x2 are such

that B̆δ
C(X)

(x1, x2) holds. Then, by Theorem 10.13, B ε

3

C(Y )
(

f
( ε

3

)

(x1), f
( ε

3

)

(x2)
)

holds. By Theorem 10.35, B ε

3

C(X)
(

ap(f)(xi), f
( ε

3

)

(xi)
)

holds. Together this means

that Bε
C(Y )

(ap(f)(x1), ap(f)(x2)) holds as required. �

Theorem 10.37. The function ap is uniformly continuous with modulus I.
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Proof. Let ε be arbitrary. Suppose that f1 and f2 are such that Bε
C(X→Y )

(f1, f2)
holds. Let x: C(X) and δ be arbitrary. Because f1 and f2 are regular functions,

B δ

2
+ε

X→Y
(

f1

(

δ

4

)

, f2

(

δ

4

))

holds. Therefore, by Theorem 10.31, B δ

2
+ε

C(Y )

(

f1

(

δ

4

)

(x),

f2

(

δ

4

)

(x)

)

holds. By Theorem 10.35, B δ

4

C(Y )

(

ap(fi)(x), fi

(

δ

4

)

(x)

)

holds. Together

this yields Bδ+ε
C(Y )

(ap(f1)(x), ap(f2)(x)), and since δ and x were arbitrary,
Bε(ap(f1), ap(f2)) holds as required. �

Theorem 10.38. For any f :X→Y, ap
(

f̂
)

≍ f̄.

Proof. Let ε1, ε2, and x: C(X) be arbitrary. Because f̄ (x) is a regular function,
B ε1

2
+ε2

X
(

f̄ (x)
( ε1

2

)

, f̄ (x)(ε2)
)

holds and hence Bε1+ε2

X
(

f̄ (x)
( ε1

2

)

, f̄ (x)(ε2)
)

holds.

Because ap
(

f̂
)

(x)(ε1) = f̄ (x)
( ε1

2

)

, we have Bε1+ε2

X
(

ap
(

f̂
)

(x)(ε1), f̄ (x)(ε2)
)

as

required. �

By using ap, we can define a map2 function that lifts a curried function f : X →
Y →Z to map2(f): C(X)→C(Y )→C(Z).

Definition 10.39. map2(f)4 ap ◦map(f).

Other functions can be made to lift n-ary functions by repeated use of ap and map.

We also define equivalent versions of ap and map2 that use map′, which work when
the appropriate domains are prelength spaces.

Definition 10.40. ap′(f)(x)4 λε.map′
(

f
( ε

2

))

(x)
( ε

2

)

.

Definition 10.41. map2′(f)4 ap′ ◦map′(f).

The same theorems that hold for ap also hold for ap′ with the exception that the
modulus of continuity for ap′(f) can be improved.

Theorem 10.42. For any f : C(X→ Y ), ap′(f) is uniformly continuous with mod-
ulus λε.µf

( ε

3

)

( ε

3

)

.

Proof. This proof is similar to the proof of Theorem 10.36. The improved modulus
of continuity is a consequence of improved modulus of continuity for map′ given by
Theorem 10.17. �
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10.3 Remarks

10.3.1 Curried Uniformly Continuous Functions

There is an advantage to using curried functions over using uncurried functions.
Consider some function f :X→ (Y →Z). The result of applying f to some value a:
X is itself a uniformly continuous function f(a): Y → Z. The advantage is that the
modulus of continuity of f(a) is allowed to depend on the value of a. This means
that when map2(f)(x)(y): C(Z) is approximated to within ε, the computation will
first approximate x: C(X) to within µf

( ε

2

)

, then y: C(X) will be approximated by
using a modulus that depends on the approximation of x. The extra information
given by the approximation of x can potentially be used to save work by reducing
accuracy required from y. If f were uncurried, X × Y → Z, then one modulus of
continuity for f would need to apply uniformly for all (x, y):X ×Y .

This advantage does not work symmetrically in the two parameters of a uniformly
continuous function. When the value map2(f)(x)(y): C(Z) is approximated, the
approximation for x: C(X) cannot depend on the value of the approximation of y:
C(Y ) because of the way that the parameters are ordered. Therefore, one should
consider the order of the parameters of uniformly continuous functions in order to
have optimal efficiency.

I believe we could define curry : (X × Y → Z) ⇒ X → Y → Z. However, I do not
believe that we can define uncurry : (X→ Y → Z) ⇒X × Y → Z because there is no
way to construct a uniform modulus of continuity from the X-indexed set of uni-
formly continuous functions. Since I work with curried functions directly, I did not
pursue the development of curry.

10.3.2 Cartesian but not Closed

Theorem 9.7 showed that metric spaces form a category. In Section 13.1, we will
show that this category is Cartesian, meaning that we can take the cross product of
two metric spaces. However, this category is not closed because we cannot con-
struct a uniformly continuous eval : X × (X → Y ) → Y function. The problem is
that we cannot find a modulus of continuity for eval that works uniformly for all
inputs. In particular it has to work for all f :X→ Y . Suppose µeval did exist. Then
given a and b such that Bµeval(ε)

X (a, b) holds, then Bε
Y (eval(a, f), eval(b, f)) would

hold. But this would be equivalent to Bε
Y (f(a), f(b)), which means that µeval

would be a modulus of continuity for f . However, f was arbitrary. We do not have
one modulus of continuity that works for every function, so this is impossible. A
similar argument shows that there is no uniformly continuous compose : (Y → Z) ×
(X → Y ) → X → Z function, so the category is not an enriched category over itself
either.
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If we worked with a restricted set of uniformly continuous functions that all shared
one global modulus, for example, the set of uniformly continuous non-expansive
maps, then we would have a Cartesian closed category. In this case, eval would be
uniformly continuous with the global modulus, and any function in the simply
typed lambda calculus could be interpreted in this category [Lambek, 1980].

10.3.3 Errors Found During Formalization

I completed paper proofs of the previous theorems before formalizing them in Coq.
I published these paper proofs in Mathematical Structures in Computer Sci-
ence [O’Connor, 2007]. Because of this preparation, the process of computer for-
malization was straightforward. Still, a few errors were uncovered during formaliza-
tion. These errors have been corrected in this thesis.

Most errors found were very minor. For example, my original proof of The-
orem 9.24 failed to consider the case when γ is too big. Problems with epsilons
being too large were easy to fix. Coq did catch one more substantial error in my
original proof of Theorem 10.8 with the error message.

Error: Impossible to unify

"ball (m:=Complete (Complete X)) ((1 # 2) * d1)

(Cunit (Cunit (x ((1 # 2) * d1)%Qpos) ((1 # 2) * d1)%Qpos))

(Cunit (x ((1 # 2) * d1)%Qpos))" with

"ball (m:=Complete (Complete X)) ((1 # 2) * d1)

(Cunit (Cunit (x ((1 # 2) * d1)%Qpos ((1 # 2) * d1)%Qpos)))

(Cunit (x ((1 # 2) * d1)%Qpos))"

It may take you a moment to find the difference between these two expressions. I

had bitten off a bit more than I could chew when I tried to conclude Bδ
C(C(X))





xi,

xi

(

δ

2

)(

δ

2

)





directly. Although it does hold, it took one more step in reasoning

than I had originally figured.

I also found one “error” in my Coq proof during the final preparation of this
chapter. Of course, it was not a logical error because Coq would not allow that.
Instead it was an efficiency error. When creating ap′, I had neglected to give it its
better modulus of continuity found in Theorem 10.42, and instead had given it the
same modulus found in Theorem 10.36. This “error” has been corrected in the Coq
code.
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Chapter 11

Real Numbers

Using the completion monad, it is now easy to define the real numbers.

Definition 11.1. R4 C(Q).

Functions operating on the real numbers can be created by using map′ or bind′ to
lift uniformly continuous functions operating on the rationals. This is the advan-
tage of using the monad functions. It is often easier to define a function on the
rationals than on the reals, because it is possible to decide for two rational numbers
a and b which of a < b, a = b, or a > b hold. The real numbers do not have this
property.

Theorem 11.2.

• For all a :Q, the functions λb:Q.a+ b and λb:Q.−b are both uniformly con-
tinuous with moduli I.

• For all a :Q, λb:Q. b
⊥a

is uniformly continuous with modulus I.

• For all a :Q, λb:Q. b
⊤a

is uniformly continuous with modulus I.

• The function λb:Q.|b| is uniformly continuous with modulus I.

• For all a : Q, λb: Q.a b is uniformly continuous with modulus λε.
ε

|a|
(or

λε.∞ in the case when a= 0).

By using map′, all of these unary functions can be lifted to functions on R. For the
moment, one of the arguments to the binary functions + , · , min and maxmust be
rational. For example, for any a: Q, the unary function map′ (λb: Q.a + b): R→R

is the function that translates by the rational number a.

At this point, one can see why regular functions work better than regular
sequences. For multiplication by the constant a: Q, the modulus of continuity is
λε.

ε

|a|
. This means that when map′(λb.a b)(x) is approximated by ε, then x is

approximated by ε

|a|
, which is precisely the minimum approximation needed from x.

If one used regular sequences, then one would need to round ε

|a|
down to the

nearest number of the form 1

n
before proceeding. Extra work may be done because

x is over-approximated. For a deep computation, all these over-approximations
could multiply causing significant excess work.
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11.1 Binary Functions of Real Numbers

One can use map2′ to lift addition to operate on R.

Theorem 11.3. The function λa: Q.λb: Q.a + b is uniformly continuous from Q

to Q→Q with modulus I.

The definition of addition on R is

Definition 11.4. x+ y4 map2′(λa:Q.λb:Q.a+ b)(x, y).

The definition of multiplication on R is a little more complicated than for addition.

Theorem 11.5. For any c : Q+, the function λa.λb.a b
⊤

⊥

−c

c

is uniformly continuous

from Q to Q→Q with modulus λε.
ε

c
.

Proof. Let a0, a1: Q be such that B ε

c

Q(a0, a1) holds. This means c |a0 − a1| ≤ ε

holds. Let b: Q be arbitrary. Because

∣

∣

∣

∣

∣

b
⊤

⊥

−c

c
∣

∣

∣

∣

∣

≤ c holds, we have that

∣

∣

∣

∣

∣

b
⊤

⊥

−c

c
∣

∣

∣

∣

∣

|a0 − a1 | ≤ ε holds. Therefore,

∣

∣

∣

∣

∣

a0 b
⊤

⊥

−c

c

− a1 b
⊤

⊥

−c

c
∣

∣

∣

∣

∣

≤ ε holds, which is the same

as Bε
Q

(

a0 b
⊤

⊥

−c

c

, a1 b
⊤

⊥

−c

c
)

. Thus Bε
Q→Q

(

λb.a0 b
⊤

⊥

−c

c

, λb.a1 b
⊤

⊥

−c

c
)

holds as required. �

The definition of multiplication for x, y :R is

Definition 11.6. x y4 map2′

(

λa.λb.a b
⊤

⊥

−c

c
)

(x, y), where c4 |y(1)|+1.

Because multiplication is not uniformly continuous, some closed interval containing
y must be found. This requirement is reflected in the fact that c is used in the defi-
nition of the modulus of continuity in Theorem 11.5.

This definition of multiplication is asymmetric because only y is bound by a closed
interval. The typical definitions of multiplication in exact real arithmetic imple-
mentations find closed intervals for both x and y. My definition is the natural defi-
nition of multiplication that one gets when one uses monad operations. It saves one
from the unnecessary work of finding a closed interval for x. Also notice that when
approximating x y, how well y needs to be approximated depends on the value of
the approximation of x. These two considerations mean that one should try to
multiply two real numbers in the best order in order to allow the approximation of
x y to be as efficient as possible.
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11.2 Inequalities

Inequality is defined in terms of non-negativity and is analogous to the definition
that Bishop and Bridges [Bishop and Bridges, 1985] use.

Definition 11.7. x∈R0+4 ∀ε:Q+.−ε≤Qx(ε).

Definition 11.8. x≤R y4 y− x∈R0+.

Strict inequalities are defined in terms of positivity. The obvious definition of posi-
tivity is dual to the definition of non-negativity, ∃ε: Q+.ε <Q x(ε). This would be
analogous to the definition given by Bishop and Bridges [Bishop and Bridges,
1985]. However, I have found an alternative definition to be better.

Definition 11.9. x∈R+4 ∃ε:Q+. ε̂ ≤Rx.

Definition 11.10. x<R y4 y− x∈R+.

To compute the reciprocal (see Section 11.3) or the logarithm (see Section 11.4) of
a real number x, one needs a rational number strictly between 0 and x. This is
exactly what the witness in my definition provides. To find the same value using
the definition from Bishop and Bridges [Bishop and Bridges, 1985], one needs to
compute x(ε)− ε, which is a potentially expensive computation.

11.3 Reciprocal

Not all functions that one wishes to represent are uniformly continuous. One
example of a non-uniformly continuous function is the reciprocal function, λx.x−1.
Bishop and Bridges [Bishop and Bridges, 1985] define a continuous function as a
function that is uniformly continuous on every compact interval in its domain. The
general idea is, for each x, to find a domain containing x that the function is uni-
formly continuous on, and clamp the input to that domain.

Theorem 11.11. For every a : Q+, λx.

(

x
⊤a

)−1

and λx.
(

x
⊥−a

)−1

are uniformly

continuous from Q to Q, and both functions have a modulus of continuity of
λε.ε a2.

One can now define x−1 for any x:R such that (x< 0)∨ (0<x).

Definition 11.12. Suppose that 0 < x. Then there exists some a : Q such that
0< â ≤ x. In this case, define the reciprocal as
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x−14 map′

(

λb.
(

b
⊤a

)−1
)

(x).

Similarly if x < 0, then there exists some a : Q such that x ≤ â < 0. In this case,
define the reciprocal as

x−14 map′

(

λb.

(

b
⊥a
)−1

)

(x).

It is important to note that the result is independent of the choice of a.

Theorem 11.13. If 0<a0̂≤x and 0<a1̂≤ x, then

map′

(

λb.

(

b
⊤a0

)−1
)

(x)≍map′

(

λb.

(

b
⊤a1

)−1
)

(x).

Notice that the larger the value of a, the larger the modulus of continuity is. The
larger the modulus of continuity is, the more efficient the lifted function is, because
less work is done when approximating the input. Therefore, it is helpful to find as
large an a as is reasonable when proving that x is positive (or negative).

11.4 Power Series

Other elementary functions can be defined in terms of power series. The limit of a
convergent sequence can be constructed if the modulus of convergence is known. It
is particularly easy to compute the limit of an alternating decreasing series.

Theorem 11.14. Suppose that lim
n→∞

an = 0, an is alternating, and ∀ i.
|ai+1|< |ai|.11.1 Let x(ε)4 ∑

{ i | ε<|ai| }

ai. Then x is a regular function.

Definition 11.15. Given the conditions of Theorem 11.14, define
∑

i=0
∞

ai4 x.

We can also easily compute the limit of a sub-geometric series.

Theorem 11.16. Given any c: Q such that 0 ≤ c < 1, suppose that an is a series
such that ∀i. |ai+1| ≤ c |ai|. Let x(ε)4 ∑

{

i
∣

∣

∣
ε<

|ai|

1−c

}

ai. Then x is a regular function.

11.1. The definition of lim
n→∞

an = l is ∀ε:Q+.∃n.∀m≥n. |am − l| ≤ ε.
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Definition 11.17. Given the conditions of Theorem 11.16, define
∑

i=0
∞

ai4 x.

The power series of several elementary functions are alternating and decreasing on
small rational inputs.

Definition 11.18.

• For −1<a≤ 0, expQ(a)4 ∑

i=0
∞ ai

i!
.

• For −1<a< 1, sinQ(a)4 ∑

i=0
∞

(−1)
i a2i+1

(2i + 1)!
.

• For −1<a< 1, tanQ
−1(a) 4 ∑

i=0
∞

(−1)
i a2i+1

2i + 1
.

These functions can be extended to all rationals in their domains by repeated
applications of the following formulas to reduce input into the above domains.

expQ(a) ≍ expQ
2
(

a

2

)

expQ(a) ≍ expQ
−1(−a)

sinQ(a) ≍ 3 sinQ
(

a

3

)

− 4 sinQ
3
(

a

3

)

tanQ
−1(a) ≍ −tanQ

−1(−a)
tanQ

−1(a) ≍ π

2
− tanQ

−1(a−1) (for 0<a)

tanQ
−1(a) ≍ π

4
+ tanQ

−1

(

a− 1

a+1

)

(for 0<a)

The real number π can be defined in terms of tanQ
−1 in several ways. Below is a def-

inition that uses particularly small inputs to tanQ
−1 [Williams, 2002].

Definition 11.19.

π4 176 tanQ
−1
(

1

57

)

+ 28 tanQ
−1
(

1

239

)

− 48 tanQ
−1
(

1

682

)

+ 96 tanQ
−1
(

1

12943

)

.

The power series for tanh−1 is sub-geometric.

Definition 11.20. For −1<a< 1, tanhQ
−1(a) 4 ∑

i=0
∞ a2i+1

2i + 1
.

The function cosQ can be easily defined in terms of sinQ, and lnQ can be defined in
terms of tanhQ

−1.

cosQ(a) 4 1− 2 sinQ
2
(

a

2

)

lnQ

(

n

d

) 4 2 tanhQ
−1

(

n− d

n+ d

)

In order to improve efficiency, the input for ln is reduced to the interval
[

1

2
, 2
]

by
repeated applications of the following formula:

lnQ(a)≍ lnQ

(

a

2

)

+ lnQ(2)
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Theorem 11.21. The functions sinQ, cosQ, and tanQ
−1 are uniformly continuous

on Q with moduli I.

Theorem 11.22. For every a : Z, λb: Q. expQ

(

b
⊥a
)

is uniformly continuous with

modulus λε.ε 2a if a≤ 0 and with modulus λε.ε 3a if 0≤ a.

Theorem 11.23. For every a : Q+, λb: Q. lnQ
(

b
⊤a

)

is uniformly continuous with

modulus λε.ε a.

These functions can all be lifted, using bind′, to functions on R or whatever their
domains are. The non-uniformly continuous functions exp and ln are defined the
same way that multiplication and the reciprocal were defined.

Definition 11.24. exp(x)4 bind′

(

λb:Q. expQ

(

b
⊥c
)
)

(x) where c4 ⌈x(1)+ 1⌉.

Definition 11.25. Suppose that 0 < x. Then there exists some a : Q such that
0< â ≤ x.

ln(x)4 bind′
(

λb. lnQ

(

b
⊤a

))

(x).

Other elementary functions could be defined in terms of the elementary functions
given above, but I have not pursued this yet.

11.4.1 Summing Series

One of the more challenging aspects of the formalization was computing the infinite
series in an efficient manner. I needed to convince Coq that the procedure of accu-
mulating terms until the error becomes sufficiently small will terminate. To do this,
I provided Coq with an upper bound on the number of terms that would be
required. I tried two different methods to accomplish this.

The first method computes an upper bound on the number of terms needed as a
Peano natural number. The problem is that the call-by-value evaluation scheme
used by Coq’s virtual machine would first compute this value before computing the
series. This upper bound is potentially extremely large, it is encoded in unary, and
only a few terms may actually be needed in the computation. My solution to this
problem was to create a lazy natural number data type using the standard trick of
placing a function from the unit type inside the constructor to delay evalua-
tion [Mitchell, 2003].
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Inductive LazyNat : Set :=

| LazyO : LazyNat

| LazyS : (unit -> LazyNat) -> LazyNat.

Figure 11.1. Inductive definition of lazy natural numbers for Coq.

When a lazy natural number parameter is passed to a function under the call-by-
value evaluation scheme, the parameter will be evaluated to weak head normal
form. This means that if the number is of the form LazyS f , then the f term will
be reduced to fun () => m , but the body m will not be evaluated. If m has a very
large normal form, then this delay will prevent the term from being expanded.
Only when f is forced, by evaluating f (), will the body be evaluated to the next
constructor. If f () is never evaluated, then the work of fully evaluating the
number is avoided.

By using this delaying and forcing technique, only the number of constructors
needed for the recursion are evaluated. Care is needed to only force evaluation
when necessary in order to avoid accidentally normalizing the entire (extremely
large) lazy natural number.

A second method, suggested by Benjamin Grégoire [Grégoire, 2007], is to compute
the number of terms needed as a binary number. This prevents the term from
becoming too big. It is possible to do recursion over the binary natural numbers
such that two recursive calls are made with the output of one recursive call being
threaded through the other. In this way, up to 2n recursive calls can be made even
though only n constructors are provided by the witness of termination.

In the simplified example below, think of F as a function that we would take the
fixed point of if we had general recursion available to us. The function
iterate_pos n is n iterations of F. Continuation passing style is used to thread the
recursive calls.

Variable A R : Type.

Variable F : (A -> R) -> A -> R.

Fixpoint iterate_pos (n:positive) (cont: A -> R) : A -> R :=

match n with

| xH => F cont

| xO n’ => iterate_pos n’ (fun a => iterate_pos n’ cont a)

| xI n’ => F (fun a => (iterate_pos n’

(fun a => iterate_pos n’ cont a)) a)

end.

Figure 11.2. The Coq function iterate_pos iterates F a given number of times.

The η-expansions of the continuations in the above definition are important, other-
wise the virtual machine would compute the value of the iterate_pos n’ cont

calls before reducing F. This is important because the idea is that F rec a may
not utilize its recursive call, rec, depending on the value of a.
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If Coq’s virtual machine supported lazy evaluation, none of these tricks would be
needed. A standard Peano number could be used as the witness of termination, and
it would only be evaluated as far as the number of recursive calls need.

11.4.2 π

A common definition of π is 4 tan−1(1). This is an inefficient way of computing π
because the series for tan−1(1) converges very slowly. My definition of π (Defini-
tion 11.19) can easily be shown to be equivalent to 4 tan−1(1) by repeated applica-
tion of the arctangent sum law :

if a, b∈ ]−1, 1[ then tan−1(a)+ tan−1(b)≍ tan−1

(

a+ b

1− a b

)

To apply the arctangent sum law, one needs to repeatedly verify that a and b lie in
]−1, 1[. To prove this, I wrote a Coq function to iterate the function f(b)4 a + b

1− a b
,

and at each step verify that the result is in the interval ]−1, 1[. This function,
called ArcTan_multiple, has type

∀a:Q.−1<a< 1⇒∀n.⊤∨
(

n tan−1(x)≍ tan−1
(

f (n)(0)
))

.

It is easy to build a function of the above type that just proves ⊤ in all cases, but
ArcTan_multiple tries to prove the non-trivial result if it can.

To apply this lemma, I use a technique called reflection [Barendregt and Geuvers,
2001]. The idea is to evaluate the ArcTan_multiple(a, r, n) into head normal form.
This will yield either left(q) or right(p). If right(p) is returned then p is the
proof we want.

My first attempt at building a tactic to implement this did not work well. I used
Coq’s eval hnf command to reduce my expression to head normal form. However,
this command repeatedly calls simpl to expose a constructor instead of using the
evaluation mechanism directly. The problem was that simpl does extra reductions
that are not necessary to get head normal form, and using eval hnf was too time
consuming.

Instead, I built a generic reflection lemma, called reflect_right, to assist in
applying the ArcTan_multiple function:

∀z:A∨B.(if z then ⊥ else ⊤)⇒B

This simple lemma does case analysis on z. If z contains a proof of A, it returns a
proof of ⊥ ⇒ B. If z contains a proof of B, it returns a proof of ⊤ ⇒ B. To prove
n tan−1(a) ≍ tan−1(f (n)(0)) for the example where a4 1

57
and n4 176, one applies

reflect_right composed with ArcTan_multiple to reduce the goal to

if (ArcTan_multiple
1

57
∗ 176) then ⊥ else ⊤,

where ∗ is the trivial proof of −1<
1

57
< 1. One then normalizes this expression to

either ⊤, if ArcTan_multiple succeeds in finding a proof, or ⊥, if it fails.
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11.5 Improving Efficiency

11.5.1 Compression

Without intervention, the numerators and denominators of rational numbers occur-
ring in real number computations become too large for practical computation. To
help prevent this, I defined a compression operation for real numbers:

compress(x)(ε)4 approxQ

(

x

(

1

d

)

, d

)

where d: Z is the smallest integer such that 1

d
<

ε

2
and approxQ(a, d) returns some

rational number within 1

d
of a. The idea is that approxQ(a, d) quickly computes a

rational number close to a but having a smaller numerator and denominator. In my
implementation, I return n

d
, where n is chosen appropriately so that n

d
is within 1

d
of a.

In any rational interval [p, q] there is a unique simplest rational number n

d
where

simplicity is measured by |n| + |d|. However, finding the simplest rational number
is roughly equivalent to a GCD computation. This is too expensive to compute, so
I use the faster approximation method given above.

The compress function is equivalent to the identity function on R.

Theorem 11.26. For any x :R, compress(x)≍x.

Generous use of compress usually increases the efficiency of real number computa-
tion. I recommend that you pass every function’s input through compress first
unless you have reason not to.

There is one extra property that I will require from approxQ in Section 11.5.2. The
approximation of a rational number will never drop below an integer.

Theorem 11.27. For any z:Z and a:Q, if z ≤ a then ∀d.z ≤ approxQ(a, d).

11.5.2 Square Root

Although one can define x
√

as exp
(

1

2
ln(x)

)

, the square root function is common

enough to warrant its own more efficient definition. If a : Q is such that 1 ≤ a < 4,
one can compute a

√
by taking the limit of Newton approximations. Let the first

approximation be b0 4 a +1

2
, and define successive approximations by bi+1 4

approxQ(
a + bi

2

2 bi
, 22i+1+1). The first approximation has an error of at most 1

2
. Each

successive approximation squares the error.
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Theorem 11.28. For any a : Q, such that 1 ≤ a < 4, let x(ε)4 bn, where n is the

first natural number such that 2−2n ≤ ε. Then x is a regular function.

Proof. Firstly, it suffices to show that for all n,
(

bn − 2−2n)2 ≤ a ≤
(

bn + 2−2n)2

and 1 ≤ bn hold. To see this, suppose
(

bn − 2−2n)2 ≤ a ≤
(

bn + 2−2n)2
and

(

bm − 2−2m)2 ≤ a ≤
(

bm + 2−2m)2
hold as well as 1 ≤ bn and 1 ≤ bm. From this we

see that 0 ≤
(

bm + 2−2m)2 −
(

bn − 2−2n)2
holds. We have that 1 ≤ bm + 2−2m

+

bn − 2−2n

holds. Therefore, 0 ≤ bm + 2−2m − bn + 2−2n

and hence bn − bm ≤ 2−2n

+
2−2m

holds. Similarly, bm − bn ≤ 2−2m

+ 2−2n

holds. Together this means
B

2−2n
+2−2m

Q
(bn, bm) holds.

Consider the case where n= 0. In this case
(

b0− 2−1
)2

=
a2

4
. Because a < 4, we can

conclude that a2

4
≤ a. We also have that

(

b0 + 2−1
)2

=
a2

4
+ a + 1, and clearly

a≤ a2

4
+ a+ 1. Finally note that 1≤ a, so 1≤ b0.

Suppose that n = m + 1. Let δ 4 2−2m

and c4 a + bm
2

2 bm
. Assume by induction that

(bm − δ)2 ≤ a ≤ (bm + δ)2 and 1 ≤ bm. We know 0 ≤
(

bm
2 − a

)2
holds and hence 0 ≤

(

bm
2 + a

)2 − 4 a bm
2 holds. From this we see that a (2 bm)

2 ≤
(

a+ bm
2
)2

holds. There-

fore a ≤ c2 and hence a ≤
(

c +
δ2

2

)2
hold. Because 1 ≤ bm, we know that

a+ bm
2 − bm δ2≤ a+ bm

2 − δ2. Because δ2≤ 1≤ bm, we have 0≤ a+ bm
(

bm − δ2
)

and

hence
(

a + bm
2 − bm δ2

)2 ≤
(

a + bm
2 − δ2

)2
holds. We also know that 0 ≤

(

a −
(bm − δ)

2
)(

(bm + δ)
2 − a

)

, so
(

a + bm
2 − δ2

)2 ≤ a (2 bm)
2 holds. Together we have

(

a+ bm
2 − bm δ2

)2≤ a (2 bm)
2 and hence

(

c− δ2

2

)2
≤ a holds.

Now we need to show that 1 ≤ bm+1 holds. We know 1 ≤ c because 1 ≤ a. There-
fore, by Theorem 11.27, 1≤ bm+1.

Because B
δ2

2

Q
(c, bm+1) holds and both 1≤ c and 1≤ bm+1 hold, we can can conclude

that
(

bm+1 − δ2
)2 ≤ a ≤

(

bm+1 + δ2
)2

holds from the fact
(

c − δ2
)2 ≤ a ≤

(

c+ δ2
)2

holds as shown above. �

For 0 < a that falls outside the interval [1, 4[, one can find some m : Z such that
1≤ 4m a< 4. Therefore, one can define the square root function on the rationals as

0
√ 4 0

for 1≤ a< 4, a
√ 4 x (where x is defined as in Theorem 11.28)

otherwise, a
√ 4 4m a

√

2m
(for the m :Z such that 1≤ 4m a< 4).

Theorem 11.29. The function λa. a
⊤0

√

is uniformly continuous with modulus

λε.ε2.
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By using bind′, the square root function can be lifted to the domain R. Notice that
the square root of any negative number will be 0. If one wishes, one could add a
dependent parameter to the square root that requires a proof that the input is non-
negative (see Definition 11.7). Unlike a proof of positivity, a proof of non-negativity
contains no constructive information, so a dependent parameter is not required to
compute the square root.

11.5.3 More Efficient Polynomials

Consider the problem of computing 4 x (1 − x) for an arbitrary real number x. The
variable x occurs twice in the expression, so two different approximations for x will
be computed (in general) to two different precisions. There is potential for some
savings here. One could instead approximate x only once, to the higher degree of
accuracy, and use the higher degree of accuracy for both approximations of x. If
approximating x is an expensive operation, and x occurs several times, then one
could potentially save a lot of work.

The above situation occurs whenever a subexpression occurs multiple times in a
given expression. The solution seems as simple as computing the highest precision
required for all instances of the subexpression. Unfortunately, it is not always
straightforward to determine what the highest degree of precision required is.
According to my definition of multiplication, when multiplying x by (1 − x) the
degree of precision required for (1 − x) depends on the value of the approximation
of x in the first term. This sequencing of approximations makes it impossible, in
general, to find the highest precision requested for x in a given expression.

Multivariable polynomials form a common class of expressions where variables
occur multiple times. This class of expressions can be optimized so that each vari-
able is only approximated once. Let p: Q[X0][X1]� [Xn−1] be a multivariable poly-
nomial in n variables.11.2 I use the ellipsis instead of writing out the full recursive
definition of the type of multivariable polynomials. One can recursively define an
interpretation of JpK

n
as a uniformly continuous function Q → � → Q → Q → Q

that agrees with the evaluation of λan−1�λa0. p(an−1)� (a0) on the unit hyperin-
terval. The case when n = 0 is trivial: JpK0 4 p. Suppose that J · K

m
has been

defined and consider the case when n = m + 1. Let M be an upper bound of
λxm.�λx0.|p′(xm)� (x0)| over the unit hyperinterval, where p′ is the formal deriva-
tive of p with respect to Xm. The interpretation for the multivariable polynomial p

is JpK
m+1 4 λa: Q.

s
p

(

a
⊤

⊥

0

1
){

m

with a modulus of continuity of λε. ε

M
. Once

defined, the uniformly continuous function can be lifted, using map and ap, in order
to apply a multivariable polynomial to real numbers.

11.2. Formally this is really Q[X][X ]� [X ], because R[X] is the ring of formal polynomials over R
for any ring R. The different formal variables are accessed by using a differing number of injec-
tions. X is the outermost variable, ι(X) is the second most outer variable, ι(ι(X)) is the third
outermost variable, where ι : R ⇒ R[X ] is the natural ring monomorphism. For this informal dis-
cussion I will stick with the traditional mathematics notation.
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An upper bound on the absolute value of a multivariable polynomial can be com-
puted in a number of ways. One reasonable method is to express the multivariable
polynomial in the Bernstein basis. The maximum and minimum of the coefficients
in the Bernstein basis form reasonable upper and lower bounds of the polyno-
mial [Zumkeller, 2008]. This is the method that I use.

Each variable is only approximated once. The bound on the derivative of p is used
to compute the modulus of continuity for that particular variable. It is interesting
to note that after a variable is approximated, it is plugged into the multivariable
polynomial, and the number of variables is reduced by one. This means the degree
of approximation required for successive variables depends on the approximation of
the previous variables. The amount of work required to evaluate a multivariable
polynomial can therefore depend on the order in which the variables appear.

11.5.3.1 Implementing More Efficient Polynomials

Implementing the above interpretation in Coq was more difficult than I had
expected. Obviously the interpretation is defined recursively. The difficulty comes

when trying to prove that λa:Q.

s
p

(

a
⊤

⊥

0

1
){

m

is uniformly continuous. This requires

supplying a proof of

∀abε.B ε

M

Q
(a, b)⇒Bε

Q→�→Q

(s
p

(

a
⊤

⊥

0

1
){

m

,

t
p

(

b
⊤

⊥

0

1
)|

m

)

. (11.1)

The difficulty is that such a proof requires reasoning about
s
p

(

a
⊤

⊥

0

1
){

m

, but one

cannot prove anything about J · Km
because it is a recursive call. All that is known

about J · K
m

is its type.

I found no other way than to recursively define an interpretation function of type

∀p:Q[X0][X1]� [Xn−1].∃f :Q→� →Q.χn(p, f),

where χn is itself defined recursively as

χ0(p, f) 4 p= f

χm+1(p, f) 4 ∀a:Q.χm

(

p

(

a
⊤

⊥

0

1
)

, f(a)

)

.

An interpretation function of this type produces a uniformly continuous function f

of type Q→� →Q along with a proof that this function is equivalent to the input
multivariable polynomial p on the unit hyperinterval. This extra information in the
type gives enough information about f so that I can prove Equation 11.1 during
the recursive definition of the interpretation function.
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11.5.4 More Efficient Power Series

A power series converges faster for arguments closer to 0. For sinQ and expQ, the
two equations mentioned before,

expQ(a) ≍ expQ
2
(

a

2

)

sinQ(a) ≍ 3 sinQ
(

a

3

)

− 4 sinQ
3
(

a

3

)

,

can be repeatedly applied to shrink the input arbitrarily close to 0. There is, of
course, a trade-off between evaluating a polynomial each time such an equation is
used and having the power series converge faster. The optimal trade-off depends on
the input and the implementation of the library. At the moment, I do not apply
any of this extra range reduction.

Unfortunately such nice reductions do not seem to exist for ln or tan−1.

11.5.5 More Efficient Periodic Functions

The functions sin and cos are both periodic with period 2π. With a reasonably fast
implementation of π, it is possible to subtract a multiple of 2π to reduce the mag-
nitude of the argument to sin or cos.

∀n:Z. sin(x) ≍ sin(x−n 2π)

∀n:Z. cos(x) ≍ cos(x−n 2π)

The best value of n would be
⌊ x

2π

⌉

. The function mapping x to a nearest integer
⌊x⌉ is not computable for real numbers, but it is computable for the rationals (it

does not matter which integer 1

2
maps to). The approximation x

2π
(
1

2
) is within 1

2
of

x

2π
, so

⌊

x

2π
(
1

2
)
⌉

is an integer within 1 of
⌊ x

2π

⌉

, which is good enough to use for n.

One could be even more clever with the symmetries of sin and cos to reduce the
range further [Lester, 2008], but I have only implemented the reductions up to 2π
described above.

11.5.6 Summing Lists

It is not uncommon to want to sum a list of real numbers. The use of ap in the def-
inition of addition means that to compute x+ y within ε, one must compute both x
and y within ε

2
. If one associates the sum of a list of numbers all to one side

a0 + (a1 + (� + an)), the first term a0 is only approximated within ε

2
, while the last

term an is approximated within ε

2n .

If one is summing a list with exactly a power of 2 number of terms, then one can
associate the sum into a balanced binary tree. In this case, all terms will be
approximated to the same degree; however, to handle more general cases it is useful
to directly define the sum of n real numbers.
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Definition 11.30.
∑

i=0
n

xi4 λε.
∑

i=0
n

xi

( ε

n

)

.

Theorem 11.31. The term
∑

i=0
n

xi is a regular function.

11.6 Correctness

There are two ways to prove that my functions are correct. One way is to prove
that they satisfy some uniquely defining properties. The other way is to prove that
each function is equivalent to a given reference implementation. I have verified that
my functions are equivalent to the corresponding functions defined in the CoRN
library [Cruz-Filipe et al., 2004]. The functions in the CoRN library can be seen to
be correct from the large library of theorems available about them. The CoRN
library contains many different characterizations of these functions and new charac-
terizations can easily be developed.

The CoRN library defines a real number structure as a complete, ordered,
Archimedean, constructive field. My first step was to prove that my operations
form a real number structure. I first attempted to directly show that my real num-
bers satisfy all the axioms of a real number structure, but this approach was diffi-
cult. Instead, I created an isomorphism between my real numbers and an existing
model of the real numbers developed by Niqui [Geuvers and Niqui, 2002]. This was
a much simpler approach because Niqui’s Cauchy sequence definition and my reg-
ular function definition are closely related. With this isomorphism in place, I
proved my operations satisfied the axioms of a real number structure by passing
through the isomorphism and using Niqui’s existing lemmas. Niqui has also proved
that all real number structures are isomorphic, so I can now create an isomorphism
between my real numbers and any other real number structure.

The next step was to prove that my elementary functions are equivalent to the cor-
responding CoRN functions. These theorems are of the form
Φ(fCoRN(x)) ≍ f(Φ(x)) where Φ is the isomorphism from CoRN’s real numbers to
my real numbers.

To aid in converting statements between different representations of real numbers, I
have created a Coq rewrite database that contains the correctness lemmas (see Sec-
tion 2.2.8.1). By rewriting with this database, expressions can be automatically
converted from CoRN’s functions into my functions. This database can easily be
extended with more functions as they are developed.

The CoRN library was more than just a specification; the library was useful
throughout my development. For example, I was often able to prove that a differen-
tiable function f is uniformly continuous with modulus λε. ε

M
when M is a bound

on the derivative of f . I could prove this because the theory of derivatives had
already been developed in CoRN, and the isomorphisms allowed me to carry these
results over to my real numbers. The CoRN library also helped me reduce the
problem of proving the correctness of continuous functions on R to proving correct-
ness only on Q.

94 Real Numbers



Theorem 11.32. Consider f : Q⇒R. If there is a CoRN differentiable function g

with derivative g ′ such that ∀a:Q.Φ(g(â)) ≍ f(Φ(â)) and ∀x. |g ′(x)| ≤ M̂, then f is

uniformly continuous with modulus λε.
ε

M
.

Theorem 11.33. If f is uniformly continuous and g is CoRN continuous and
∀a:Q.Φ(g(â))≍ f(Φ(â)), then ∀x:R.Φ(g(x))≍ f(Φ(x)).

11.7 Timings

Table 11.1 shows examples of real number expressions that can be approximated.
Approximations of these expressions were evaluated to within 10−20 on a 1.4 GHz
ThinkPad X40 laptop using Coq’s vm_compute command for computing with its
virtual machine [Grégoire and Leroy, 2002]. These examples are taken from
the “Many Digits” friendly competition problem set [Niqui and Wiedijk, 2005].

Coq Expression

Mathematical Expression Time Result Error

(CRsqrt (compress (rational_exp (1))*

compress (CRinv_pos (3#1) CRpi)))%CR
e

π

√

1 sec 0.93019136710263285866 10−20

(sin (compress (CRpower_positive 3

(translate (1#1) (compress (rational_exp (1)))))))%CR

sin((e+ 1)3) 25 sec 0.90949524105726624718 10−20

(exp (compress (exp (compress (rational_exp (1#2))))))%CR

eee

1

2

146 sec 181.33130360854569351505 10−20

Table 11.1. Timings of approximations of various real number expressions.

Keep in mind that these computations are carried out without using machine
integer support. Everything is done with inductive and co-inductive data types.

11.8 Solving Strict Inequalities Automatically

Whether a strict inequality holds between real numbers is semi-decidable. This
question can be reduced to proving that some expression e0 :R is positive. To prove
e0 is positive one must find an ε :Q+, such that ε̂ ≤ e0. I wrote a tactic to automate
the search for such a witness. It starts with an initial δ :Q+, and computes to see if
e0(δ) − δ is positive. If it is positive, then e0(δ) − δ is such a witness; otherwise δ is
halved and the process is repeated. If e0≍ 0, then this process will never terminate.
If e0< 0, then the tactic will notice that e0(δ) + δ is negative and terminate with an
error indicating that e0 is negative. I used this tactic when I needed to prove
2≤ e≤ 3 during my development.
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This tactic has been combined with the rewrite database of correctness lemmas to
produce a tactic that solves strict inequalities of closed expressions over CoRN’s
real numbers. An autorewrite tactic is applied first, which automatically trans-
forms many CoRN functions into equivalent versions of my functions (see Sec-
tion 2.2.8.1 and Section 11.6). If this completes successfully, then it runs my tactic
above that solves inequalities by computation. This allows users to work entirely
with CoRN’s real numbers from their perspective. They need never be aware that
my effective real numbers are running behind the scenes.

Recently Cezary Kaliszyk has proved that Coq’s classical real numbers (from Coq’s
standard library) form a CoRN real number structure [Kaliszyk and O’Connor,
2009], and he has shown that Coq’s elementary functions are equivalent to CoRN’s.
Now strict inequalities composed from elementary functions over Coq’s classical
real numbers can automatically be solved.

The tactic currently only works for expressions composed from total functions. Par-
tial functions with open domains pose a problem because they need constructive
proof objects. Consider the case of computing ln(x). In reality ln has type
∀x:R.0<x⇒R, and the proof of 0<x is a required second parameter. Recall from
Definition 11.10, that 0 < x contains constructive information. An actual witness
needs to be extracted from this proof in order to proceed with the computation.
However, proof objects for CoRN functions are opaque, meaning that witnesses
cannot be used for computation inside Coq, and Coq’s classical functions have no
proof objects at all. Thus the required transparent proof object cannot automati-
cally be translated from CoRN functions nor from Coq’s classical functions. How-
ever, the required proof objects are proofs of strict inequalities, so I would like to
develop a tactic that recursively solves these strict inequalities and creates trans-
parent proof objects. This will allow one to prove strict inequalities over expres-
sions with partial functions such as ln. However, such a tactic seems to require
setoid rewriting inside dependent types. This cannot be done with Coq’s current
setoid rewriting mechanism.

11.9 Remarks

11.9.1 Using this Development

I envision that the CoRN real numbers will continue to be the primary structure
used in developments. The CoRN real numbers already come with a wide variety of
theorems and definitions about them. I expect my real number library to work
behind the scenes to solve problems. For those cases where real numbers computa-
tion is needed, I expect the problem to be translated from the CoRN real numbers
to my real numbers. The problem would then be solved by computation, and then
converted back to CoRN real numbers if necessary. Hopefully, this process can be
automated most of the time, as was done in Section 11.8, so that the user does not
even need to be aware of my real number library.
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11.9.2 Reworking Power Series

The most significant issue with my implementation is the way that I implement
power series (Section 11.4). The problem is that the partial series is summed using
exact rational arithmetic. These sums create rational numbers with large numera-
tors and denominators. In future work, one should explore the possibility of using
real number arithmetic to compute the partial sums. Even though these sums are
entirely rational, the ability for real numbers arithmetic to round off intermediate
results (see compress in Section 11.5.1) could improve the overall efficiency of these
calculations.

11.9.3 Regular Functions vs Cauchy Sequences

I developed regular functions as the most flexible type that I imagined for real
numbers. I chose this representation because it is the type that reflects how real
numbers are consumed: real numbers are consumed by asking for an approxima-
tion. On the other side, Cauchy sequences reflect how real numbers are created.
For example, the real numbers defined by power series (see Section 11.4) can natu-
rally be seen as Cauchy sequences.

Now that the implementation is complete, it is worth reflecting on the actual types
behind the real numbers. Real numbers are generated in one of two ways. They are
either created from a rational number using unit, or they are generated by the limit
of a power series, which is effectively a Cauchy sequence. The arithmetic operations
on real numbers simply combine and manipulate these Cauchy sequences and their
associated moduli of convergences.

The only exceptional operation is compress. In my implementation, compress effec-
tively turns a real number into a regular sequence, which is a special kind of
Cauchy sequence. Other potential implementations of compress could be imple-
mented differently, and may not produce Cauchy sequences.

11.9.4 Haskell Prototype

Before beginning this formalization effort, I wrote a prototype Haskell module that
implemented the functions described in this chapter. I wanted to ensure that the
algorithms I had in mind would be practical for evaluation. This code, entitled Few
Digits [O’Connor, 2005b], competed in the “Many Digits” Friendly Competi-
tion [Niqui and Wiedijk, 2005] occurring on October 3-4, 2005. Although the code
did not do particularly well in the contest, finishing eighth out of nine, it still could
compute thousands of decimal digits within minutes or seconds for many of the
problems. This performance was satisfactory, and I proceeded with the Coq formal-
ization.

The formalization effort uncovered a few errors in my prototype. These errors were
all of the form of forgetting to clamp the input to some interval before function
application (see Theorem 11.11 for example). Of course, these errors do not occur
in the Coq formalization.
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11.9.5 Comparisons With Other Implementations

Cruz-Filipe implemented CoRN’s library of theorems and functions over the real
numbers in Coq [Cruz-Filipe, 2004]. He worked with an abstract axiomatization of
the real numbers, so his constructions can only be executed when given a construc-
tive model of these axioms. Niqui implemented one model of the constructive real
numbers using a Cauchy sequence representation [Geuvers and Niqui, 2002].
Although Cruz-Filipe’s work is constructive, it was never designed for evalua-
tion [Cruz-Filipe and Letouzey, 2006]. Many important definitions are opaque, so
evaluation cannot be done internally in Coq. Efficiency of computation was not a
concern during development, so even when programs are extracted from the devel-
opment, computation is slow. Cruz-Filipe showed that it is practical to develop a
constructive theory of real analysis inside Coq. My work extends this result to
show that it is possible to develop a theory of real analysis that is also practical to
evaluate. Cruz-Filipe’s work also forms the reference specification of my work (see
Section 11.6).

There have been several implementations of real numbers in Coq using a co-induc-
tive stream of digits representation. Ciaffaglione developed ring operations using a
signed binary digits representation [Ciaffaglione, 2003], and Bertot uses a similar
representation to compute Euler’s constant from its series definition [Bertot, 2007].
Most recently, Julien extended this work by implementing a stream of signed digits
representation for an arbitrary base [Julien, 2008]. These representations allow
common subexpressions to be easily shared because streams naturally memoize.
Sharing does not work as well with my representation because real numbers are
represented by functions. Julien also uses the new machine integers implementation
in Coq’s virtual machine to make his computations even faster. It remains to be
seen if using machine integers to implement rational number operations would
provide a similar boost to my implementation.

Muñoz and Lester implemented a system for approximating real number expres-
sions in PVS [Muñoz and Lester, 2005]. Their system uses rational interval analysis
for doing computation on monotone segments of transcendental functions. Unfortu-
nately, this leads to some difficulties when reasoning at a local minimum or max-
imum, so their system cannot automatically prove 0< sin

( π

2

)

, for instance.

Lester created a second implementation in PVS using fast Cauchy
sequences [Lester, 2008]. The nth approximation in a fast Cauchy has an error of

at most 1

2n . Lester defined several elementary functions. Because PVS works with
classical mathematics, there is no internal evaluation mechanism like Coq has.
Instead, the meta-system, in this case LISP, is used to create deductions that
provide arbitrarily tight rational bounds on real number expressions.

Harrison implemented a system to approximate real number expressions in HOL
Light using a representation similar to regular sequences [Harrison, 1998b]. Like
Lester’s work, his system runs a tactic that externally computes an approximation
to an expression and generates a proof that the approximation is correct.
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Jones created a preliminary implementation of real numbers and complete metric
spaces in LEGO [Jones, 1993]. She represented real numbers as a collection con-
taining arbitrarily small intervals of rational numbers that all intersect. Complete
metric spaces were similarly represented by using balls in place of intervals.
Because the only way of getting an interval from the collection is by using the arbi-
trarily small interval property, her representation could have been simplified by
removing the collection and letting it implicitly be the image of a function that
produces arbitrarily small intervals. This is similar to my work because one can
interpret a regular function f as producing the interval [f(ε)− ε, f(ε) + ε]. Perhaps
using functions that return intervals could improve computation by allowing one to
see that an approximation may be more accurate than requested.

My work is largely based on Bishop and Bridges’s work [Bishop and Bridges, 1985].
Some definitions have been modified to make the resulting functions more efficient.
My definition of a metric space is more general; it does not require that the dis-
tance function be computable. The original motivation for the distance relation was
only to develop a theory of metric spaces that did not presuppose the existence of
the real numbers; however, it allowed me to form a metric space of functions (see
Section 10.2). This metric space will not, in general, have a computable distance
function and would not be a metric space according to Bishop and Bridges’s defini-
tion.

11.9.5.1 Comparison with Classical Reals

The constructive reals are a different structure than the classical reals. One way of
defining the classical reals is by starting with classical sequences of rationals. Recall
that a classical sequence is a binary relation on N and Q satisfying the property
given in Section 2.2.2. Classical reals can be defined as classical Cauchy classical
sequences of rationals with the appropriate equivalence relation, where the classical
Cauchy condition uses a classical existential quantifier.

Not surprisingly, one cannot, in general, compute approximations of classical real
numbers like one can with constructive real numbers. There is an injection from
the constructive real numbers to the classical real numbers, but the inverse of this
function cannot be constructed.

All of the developments of real numbers above are developments of the classical real
numbers except for Cruz-Filipe and Jones’s developments. Even Ciaffaglione,
Bertot, and Julien’s work is more or less classical, even though they are using Coq.
Their implementation is constructive, but they use classical real numbers to specify
the correctness of their algorithms. This makes their work more like the other clas-
sical approaches.

Rather than using a model of the classical real numbers to verify algorithms, I find
it better to work with constructive reals which is a theory of the algorithms them-
selves. The theory of the constructive reals is compatible with the theory of the
classical reals, and working with the constructive reals helps prevent one from being
distracted by potentially uncomputable real numbers.
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Chapter 12

Integration over R

In this chapter we develop another example of a complete metric space: the space
of integrable functions. I define the integrable functions over [0,1] as the completion
of the space of formal rational step functions on [0,1] with the L1 metric. Integra-
tion is defined as a uniformly continuous function from rational step functions to
the rationals. This uniformly continuous function is then lifted to define integration
from the integrable functions to the real numbers.

The formal step functions also form a monad (Section 12.1.2) and the completion
monad distributes over this step function monad (Section 12.1.9). However, rather
than working with the monad interface for step functions, we find the applicative
functor interface easier to work with (Section 12.1.3).

To every uniformly continuous function, we associate an integrable function. This
allows us to integrate any uniformly continuous function over [0,1] (Section 12.1.7).
Because this is all developed as constructive mathematics, and because we use my
efficient real numbers from Chapter 11, this integration can be effectively carried
out inside Coq.

Finally we show how, without any additional effort, this work can be extended to
define a Stieltjes integral (Section 12.1.8).

12.1 Informal Presentation of Riemann Integration

We will implement Riemann integration as follows:

1. Define step functions;

2. Introduce applicative functors and show that step functions form an applica-
tive functor;

3. Show that the step functions form a metric space under both the L1 and L∞

norms;

4. Define integrable functions as the completion of the step functions under the
L1 norm;

5. Define integration first on step functions and lift it to operate on integrable
functions;

†. Work in this chapter was done in collaboration with Bas Spitters.

101



6. Define an injection from the continuous functions to the integrable functions
in order to integrate them.

At the end, we will see that it is natural to generalize our Riemann integral to a
Stieltjes integral.

12.1.1 Step Functions

Our first goal will be to define (formal) step functions and some important opera-
tions on them. For any type X, we first define the inductive data type of (rational)
step functions from the unit interval to X , denoted by S(X). A step function is
either a constant function, const x, for some x: X, or two step functions, f : S(X)
and g: S(X) glued at a point in o, glue ofg, where o must be a rational number
strictly between 0 and 1. We will sometimes write (const x) as x̂, and (glue ofg) as
f ⊲ o⊳ g.

Definition 12.1. The rules for constructing the inductive data type S:

x:X o: ]0,1[Q f : S(X) g: S(X)

constx: S(X) f ⊲ o⊳ g: S(X)

The elements of this inductive type are intended to be interpreted as step functions
on [0,1]. The interpretation of x̂ is the constant function on [0,1] returning x. The
interpretation of f ⊲ o ⊳ g is f squeezed into the interval [0,o] and g squeezed into
the interval [o,1]. In this sense f and g are “glued” together.

Figure 12.1. Given two step functions f and g, the step function f ⊲o⊳ g is f squeezed
into [0,o] and g squeezed into [o,1].
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Even though we call step functions “functions”, they are not really functions, and
we never formally interpret them as functions. They are a formal structure that
takes the place of step functions from classical mathematics. It does not matter
that our informal interpretation of f ⊲ o ⊳ g is not well defined at o, because the
step functions are intended for integration, not for evaluation at a point.

One can see that this inductive type is a binary tree whose nodes hold data of type
]0,1[Q, and whose leaves have type X. We work with an equivalence relation on
this binary tree structure that identifies different ways of constructing the same
step function. Informally, this is the equivalence relation induced by our interpreta-
tion; the formal equivalence relation is defined in Section 12.1.4.

We define two sorts of inverses to glue which we call left-split and right-split. Given
f : S(X) and a: ]0,1[Q we define left-split (written as f ◮ a : S(X)) and right-split
(written as a◭ f : S(X)) as follows:

Definition 12.2.

x̂ ◮ a 4 x̂

(fl ⊲ o⊳ fr)◮ a 4 













fl ◮
a

o
(if a< o)

fl (if a= o)

fl ⊲
o

a
⊳ (fr ◮

a − o

1− o
) (if a> o)

a◭ x̂ 4 x̂

a◭ (fl ⊲ o⊳ fr) 4 













(
a

o
◭ fl)⊲

o − a

1− a
⊳ fr (if a< o)

fr (if a= o)
a − o

1− o
◭ fr (if a> o).

Informally, the left split (f ◮ a) takes the portion of f on the interval [0,a] and
scales it up to the full interval [0,1]. The right split (a◭ f) does the same thing for
the portion of f on the interval [a,1]. We have that (f ◮ a) ⊲ a⊳ (a◭ f)≍ f holds,
which means that gluing back the left and right pieces of a step function split at a
returns an equivalent function back. However, this process does not generally
return an identical representation. The formal definition of the equivalence relation
is defined later in Section 12.1.4.

The inductive type for step functions has an associated catamorphism which we
call fold.

Definition 12.3.

fold : (X⇒Y )⇒ (]0,1[Q⇒Y ⇒ Y ⇒Y )⇒S(X)⇒ Y

fold(ϕ, ψ)(x̂) 4 ϕ(x)

fold(ϕ , ψ )(f ⊲ o⊳ g) 4 ψ(o, fold(ϕ, ψ)(f), fold(ϕ, ψ)(g)).
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This fold operation is used in many places. For instance, it is used to define two
metrics on step functions (Section 12.1.5) or to check whether a property holds
globally on [0,1] (Section 12.1.4). Not every fold respects the equivalence relation
on step functions, so we need to prove that each fold instance we use respects the
equivalence relation.

12.1.2 Step Functions Form a Monad

The step function type constructor S forms a monad similar to the reader monad
λX. [0,1]⇒X [Wadler, 1992]. The unit of S is the constant function, map is defined
in the obvious way using fold, and the join from S(S(X)) to S(X) is the formal
variant of the join function from the reader monad, join(f)(z) 4 f(z)(z), which
considers a step function of step functions as a step function of two inputs and
returns the step function of its diagonal:

Definition 12.4.

join
(

f̂
) 4 f

join(f ⊲ o⊳ g) 4 join(map(λx.x◮ o)(f)) ⊲ o⊳ join(map(λx.o◭x)(g)).

Rather than use these monadic functions, we use the applicative functor interface
to this monad.

12.1.3 Applicative Functors

Let M be a strong monad. To lift a function f : X ⇒ Y to a function M(X) ⇒
M(Y ), we use map: (X⇒ Y )⇒M(X)⇒M(Y ). Lifting a function with two curried
arguments is possible using a similar function map2. However, to avoid having to
write a function mapn for each natural number n, one can use the theory of
applicative functors. An applicative functor consists of a type constructor T and
two functions:

pure : X⇒T(X)

ap : T(X⇒Y )⇒T(X)⇒T(Y )

The function pure lifts any value inside the functor. The ap function applies a func-
tion inside the functor to a value inside the functor to produce a value inside the
functor. We denote pure(x) by x̂, as was done for monads, and we denote ap(f)(x)
by f @ x. An applicative functor must satisfy the following laws [McBride and
Paterson, 2008]:

Î@ v≍ v Identity

B̂@ u@ v@w ≍ u@ (v@w) Composition

f̂ @ x̂ ≍ f(x) Homomorphism
u@ ŷ ≍ evy @ u Interchange
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Where B and I are the composition and identity combinators respectively (see Sec-
tion 12.2.4) and evy4 λf.f(y) is the function which evaluates at y.

Every strong monad induces the canonical applicative functor [McBride and
Paterson, 2008] where

pure 4 unit

f @ x 4 bind (λg.map(g)(x))f.

As the name suggests, every applicative functor can be seen as a functor. Given an
applicative functor T, we define map : (X⇒Y )⇒T(X)⇒T(Y ) as

map(f)(x)4 f̂ @ x.

When T is generated from a monad, this definition of map is equivalent to the defi-
nition of map associated with the monad.

12.1.4 The Step Function Applicative Functor

The ap function for step functions S applies a step function of functions to a step
function of argument pointwise. It is formally defined as follows:

Definition 12.5.

f̂@x̂ 4 f(x)

f̂@(xl ⊲ o⊳ xr) 4 (f̂@xl) ⊲ o⊳ (f̂@xr)

(fl ⊲ o⊳ fr)@x 4 (fl@(x◮ o)) ⊲ o⊳ (fr@(o◭x)).

For step functions S, we denote map(f)(x) by fP x. This notation is meant to sug-
gest the similarity with the composition operation, which is the definition of map

for the reader monad λX.[0,1]⇒X .

Definition 12.6. The binary version of map is defined in terms of map and ap.

map2(f)(a, b)4 fP a@ b.

Higher arity maps can be defined in a similar way; however, we found it more nat-
ural to simply use map and ap everywhere.

We will often use map2 to lift infix operations. Because of this, we give it a special
notation.

Definition 12.7. If ⊛ is some infix operator such that λxy.x⊛y :X⇒ Y ⇒Z, then
we define

f 〈⊛〉g4 (λxy.x⊛y)P f @ g,
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where f : S(X), g: S(Y ), and f 〈⊛〉g : S(Z).

For example, if f , g : S(Q) are rational step functions, then f 〈−〉g is the pointwise
difference between f and g as a rational step function.

We can lift relations to step functions as well. A relation is simply a function to ⋆,
the type of propositions. Thus a binary relation ∝ has a type λxy.x ∝ y :
X ⇒ Y ⇒ ⋆ . If we use map2, we end up with an function λfg. f 〈 ∝ 〉g :
S(X) ⇒ S(Y ) ⇒ S(⋆). The result is not a proposition, but rather a step function
of propositions. Classically, this corresponds to a step function of Booleans. In
other words, S(⋆) represents a type of step characteristic functions on [0,1].

Each way of turning a characteristic function into a proposition determines a dif-
ferent kind of predicate lifting [Schröder, 2005]. For our purposes, we are interested
in the one that asks the characteristic function to hold everywhere. The function
fold⋆ : S(⋆)⇒ ⋆ does this by folding conjunction over a step function.

Definition 12.8. fold⋆4 fold(I, λopq. p∧ q).

When this function is composed with map2, the result lifts a relation to a relation
on step functions.

Definition 12.9. f {∝}g4 fold⋆(f 〈∝〉g).

For example, we define equivalence on step functions by lifting the equivalence rela-
tion on X.

Definition 12.10. f ≍S(X) g4 f {≍X }g.

Two step functions are equivalent if they are pointwise equivalent everywhere.

Similarly, we define a partial order on step functions by lifting the inequality rela-
tion on Q.

Definition 12.11. f ≤S(Q) g4 f {≤Q }g.

A step function f is less than a step function g if f is pointwise less than g every-
where.

12.1.5 Two Metrics for Step Functions

The step functions over the rational numbers, S(Q), form a metric space in two
ways, with the L∞ metric and the L1 metric. We first define the two norms on the
step functions.
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Definition 12.12.

‖f ‖∞ 4 foldsup(absP f)

‖f ‖1 4 foldaffine(absP f)

where

foldsup 4 fold(I, λoxy.max (x, y))

foldaffine 4 fold(I, λoxy.o x+(1− o) y)

and abs :Q⇒Q is the absolute value function on Q.

The function foldsup : S(Q) ⇒ Q returns the supremum of the step function, while
the function foldaffine : S(Q)⇒Q returns the integral of a step function.

Next, the metric distance between two step functions is defined.

Definition 12.13.

d∞(f , g) 4 ‖f 〈−〉g‖∞
d1(f , g) 4 ‖f 〈−〉g‖1.

Finally, the distance relations are defined in terms of the distance functions.

Definition 12.14.

Bε
S∞(Q)

(f , g) 4 d∞(f , g)≤ ε

Bε
S1(Q)

(f , g) 4 d1(f , g)≤ ε.

Both these metric spaces are prelength spaces.

When we need to be clear which metric space is being used, we will use the nota-
tion S∞(Q) or S1(Q).

The two fold functions defined in this section are uniformly continuous for their
respective metrics.

foldsup : S∞(Q)→Q

foldaffine : S1(Q)→Q

The identity function is uniformly continuous in one direction, ι : S∞(Q) → S1(Q);
however, the other direction is not uniformly continuous.

The metrics S∞(X) and S1(X) can be defined for any metric space X :

Bε
S∞(X)

(f , g) 4 fold⋆(Bε
XP f@g)

Bε
S1(X)

(f , g) 4 ∃h: S(Q+). fold⋆(BXPh@f@g )∧‖h‖1 6 ε
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We have implemented the generic S∞(X) metric in our formalization. However, for
the L1 space, we have only implemented the specific S1(Q) metric.

12.1.6 Integrable Functions and Bounded Functions

The bounded functions and the integrable functions are defined as the completion
of the step functions under the L∞ and the L1 metrics respectively.

Definition 12.15.

B 4 C ◦S∞

I 4 C ◦S1.

In Section 12.1.1, we informally interpreted elements of S(X) as (partially defined)
functions on [0,1]. Similarly, we can informally interpret each bounded function as
a (partially defined) function. Consider f : B(Q). Define gn 4 f

(

1

n

)

. Then

lim
n→∞

gn(x) exists for all points x in [0,1] except perhaps for the (rational) splitting

points of the step functions gn. At the points where this limit is defined, it is (clas-
sically) continuous.

To every Riemann integrable function on [0,1] we can associate an element in I(Q).
Moreover, functions f and g such that

∫

|f − g | ≍ 0 will be assigned to equivalent
elements in I(Q). This definition can be extended to every generalized Riemann
integrable function, where a function h is generalized Riemann integrable if hn 4
max

(

min (h, n̂),−n
)

is integrable for each n and the limit of
∫

hn converges (even
though hn may not converge pointwise everywhere). Conversely, we can informally
interpret every element f of I(Q) as a generalized Riemann integrable function.
Define gn as the sequence

gn4 f

(

1

22n+1

)

.

By the fundamental lemma of integration [Lang, 1993], gn converges pointwise
almost everywhere. Let g be this pointwise limit. Then g is a generalized Riemann
integrable function associated with f .

The bounded functions have a supremum operation, sup : B(Q)→R and, similarly,
the integrable functions have an integration operation,

∫

: I(Q) → R which are
defined by lifting the two folds from the previous section (recall Definition 10.14).

Definition 12.16.

sup (f) 4 mapC
′ (foldsup)(f)

∫

f 4 mapC
′ (foldaffine)(f)
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There is an injection from the bounded functions into the integrable functions
defined by lifting the injection on step functions: ῑ : B(Q) → I(Q). However, there
is no injection from integrable function to bounded functions. Thus bounded func-
tions can be integrated, but integrable functions may not have a supremum.

12.1.7 Riemann Integral

The process for integrating a function is as follows. Given a function f , one needs
to find an equivalent representation of f as an integrable function and then this
integrable function can be integrated. We will consider how to integrate uniformly
continuous functions on [0,1], which is a useful class of functions to integrate.

We convert a uniformly continuous function to an integrable function by a two step
process. First, we will convert it to a bounded function, and then the bounded
function can be converted to an integrable function using the injection defined in
the previous section.

To produce a bounded function, one needs to create a step function that approxi-
mates f within ε for any value ε: Q+. The usual way of doing this is to create a
step function where each step has width no more than 2 µf(ε). The value at each
step is taken by sampling the function at the center of the step.

Figure 12.2. Given a uniformly continuous function f and a step function s4 that
approximates the identity function, the step function map(f)(s4) (or fP s4) approximates
f in the familiar Riemann way.

When developing the above, it became clear that one can achieve the desired result
by creating a step function whose values are the sample inputs, and then mapping
f over these “sampling step-functions” (see Figure 12.2). In fact, the limit of
these “sampling step-functions” is simply the identity function on [0,1] represented
as a bounded function, I[0,1] : B(Q) (see Section 12.2.6). Given any uniformly con-
tinuous function f : Q→Q, we can prove that mapS∞(f): S∞(Q) →S∞(Q) is uni-
formly continuous. We can then lift again to operate on bounded functions,
map′

C(mapS∞(f)) : B(Q)→B(Q). Applying this to I[0,1] yields f restricted to [0,1]
as a bounded function, which can then be converted to an integrable function and
integrated.
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Definition 12.17.
∫

[0,1]
f4 ∫ (

ῑ
(

mapC
′ (mapS∞(f))

(

I[0,1]
)))

.

With a small modification, this process will also work for f : Q → R. In this case
map(f) has type S(Q) ⇒ S(R), Fortunately, there is an injection dist : S(R) ⇒
B(Q), that interprets a step function of real values as a bounded function (see Def-
inition 12.20). We can prove that the composition dist ◦ (mapS(f)) : S∞(Q) →
B(Q) is uniformly continuous. Then, proceeding in a similar fashion, this can be
lifted with bind′ (recall Definition 10.21) and applied to I[0,1] to yield f restricted to
[0,1] as a bounded function, which can then be integrated.

Definition 12.18.
∫

[0,1]
f4 ∫ (

ῑ
(

bindC
′ (dist ◦ (mapS(f)))

(

I[0,1]

)))

.

An arbitrary uniformly continuous function f : R→R can be integrated on [0,1] by
integrating f ◦ unitC : Q → R because the Riemann integral only depends on the
value of functions at rational points.

12.1.8 Stieltjes Integral

Given the previous presentation, any bounded function could be used in place of
I[0,1]. A natural question arises: what happens when I[0,1] is replaced by another
bounded function, g : B(Q)? An analysis shows that the result is the Stieltjes inte-
gral with respect to g−1, when g is non-decreasing.

Definition 12.19.
∫

f dg−14 ∫ (

ῑ
(

bindC
′ (dist ◦ (mapS(f)))(g)

))

.

We never intended to develop the Stieltjes integral; however, it practically falls out
of our work for free. This is not quite as general as the Stieltjes integral for three
reasons. Because g is defined on [0,1], this means that g−1’s range must go from 0
to 1. Essentially, g−1 must be a cumulative distribution function and, hence, g is a
quantile function. Secondly, because g is a bounded function, g−1 must have com-
pact support (meaning g−1 must be 0 to the left of its support and 1 to the right of
its support). Thirdly, our bounded functions can only have discontinuities at
rational points.

We have tried to allow g to be an arbitrary integrable function (this would remove
some of the previous restrictions); however, we have been unable to constructively
show that dist ◦ (mapS(f)) : S1(Q) ⇒ I(Q) is uniformly continuous when f is. We
have generated counterexamples where f is uniformly continuous with modulus µ
and dist ◦ (mapS(f)) is not uniformly continuous with modulus µ; however, for our
particular counterexamples, dist ◦ (mapS(f)) is still uniformly continuous with a
different modulus.

Still, our integral should allow one to integrate with respect to some interesting dis-
tributions such as the Dirac distribution and the Cantor distribution.
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12.1.9 Distributing Monads

The function dist : S(R)⇒ B(Q) combines two monads on metric spaces, C and S.
The function dist has type S(C(Q))⇒ C(S(Q)). In general, the composition of two
monads M ◦ N forms a monad when there is a distribution function dist :
N(M(X)) → M(N(X)) satisfying certain laws [Beck, 1969]. Below we state the
laws in a more familiar function style [Jones and Duponcheel, 1993]:12.1

dist ◦mapN (mapM(f)) ≍ mapM(mapN(f)) ◦ dist
dist ◦ unitN ≍ mapM(unitN)

dist ◦mapN(unitM) ≍ unitM

prod ◦mapN(dorp) ≍ dorp ◦ prod

where

prod 4 mapM(joinN) ◦ dist
dorp 4 joinM ◦mapM(dist).

Definition 12.20. In our case, the distribution function is defined as

dist : S∞(C(X)) →C(S∞(X))

dist(f) 4 λε.mapS∞(λx.x(ε))(f).

The function dist maps a step function f with values in the completion of X to a
collection of approximations fε: S∞(X) to the function f such that for all ε in Q+,
|f − fε| ≤ ε “pointwise”.

12.2 Implementation in Coq

In this section, we treat aspects related to our implementation in Coq.

12.2.1 Glue and Split

As discussed in Section 12.1.1, step functions are an inductive structure defined by
two constructors. One constructor constStepF creates constant step functions, and
the other constructor, glue, squeezes two step functions together, joining them
together at a given point o : ]0,1[Q. One of the first operations we defined on step
functions (after defining fold) was Split, which is like the opposite of glue.
Recall from Section 12.1.1 that, given a step function f and a point a : ]0,1[Q,
Split splits f into two pieces at a. The functions SplitL and SplitR return the
left step function and the right step function respectively. Table 12.1 lists the asso-
ciation between our mathematical notation and the concrete syntax used in Coq.

12.1. For the S and C monads, we formally checked all of these rules apart from the last one
which was too tedious; however, the correctness of the integral does not depend on the proofs of
these laws.
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Mathematical Notation Coq Syntax

x̂ constStepF x

f ⊲ o⊳ g glue o f g

f ◮ a SplitL f a

a◭ f SplitR f a

(f ◮ a, a◭ f) Split f a

Table 12.1. The concrete syntax used in Coq for our step function notation.

The key to reasoning about Split was to prove the Split-Split lemmas:

a b= c ⇒ f ◮ a◮ b≍ f ◮ c

a+ b− a b= c ⇒ b◭ a◭ f ≍ c◭ f

a+ b− a b= c⇒ d c= a ⇒ (a◭ f)◮ b≍ d◭ (f ◮ c)

This collection of lemmas shows how the splits combine and distribute over each
other. With sufficient case analysis, one can prove the above lemmas. These
lemmas, combined with a few other useful lemmas (such as Split-Map lemmas)
provided enough support to prove the laws for applicative functors without diffi-
culty.

12.2.2 Equivalence of Step Functions

The work in the previous section defined an applicative functor of step functions
over any type X . From this point on, we will require that X be a setoid (see Sec-
tion 2.2.8). In order to help facilitate this, in our development we define new func-
tions, constStepF, glue, Split, etc., that operate on step functions of setoids
rather than step functions of types. These functions are definitionally equal to the
previous functions, but their types now carry the setoid relation from their argu-
ment types to their result types. These new function names shadow the old func-
tion names, and the lemmas about them need to be repeated; however, their proofs
are trivial by using previous proofs.

Perhaps the biggest challenge we encountered in our formalization was to prove
that lifting setoid equivalence to step functions (Section 12.1.3) is indeed an equiva-
lence relation—in particular showing that it is transitive. We eventually succeeded
after creating some lemmas about the interaction between the equivalence relation
and Split, etc.

12.2.3 Common Partitions

When reasoning about two (or more) step functions, it is common to split up one
of the step functions so that it shares the same partition structure as the other step
function. This allows one to do induction over two step functions and have both
step functions decompose the same way. Eventually, we abstracted this pattern of
reasoning into an induction-like principle.
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Lemma StepF_ind2 :

∀XY .∀Ψ:X⇒Y ⇒ ⋆.

(∀s0 s1 t0 t1 : S(X).s0≍ s1⇒ t0≍ t1⇒Ψ(s0, t0)⇒Ψ(s1, t1) )⇒
(∀x:X.∀y:Y . Ψ( x̂ , ŷ ))⇒
(∀o.∀sl sr: S(X).∀tl tr: S(Y ).Ψ(sl, tl)⇒Ψ(sr, tr)⇒Ψ(sl ⊲ o⊳ sr, tl ⊲ o⊳ tr))⇒
∀s: S(X).∀t: S(Y ). Ψ( s, t ).

This lemma may look complex, but it is as easy to use in Coq as an induction prin-
ciple for an inductive family. Normally one would reason about two step functions
by assuming, without loss of generality, that they have a common partition, then
doing induction over that partition. Our lemma above combines these two steps
into one. In one step, one does induction as if the two functions have a common
partition. This lemma was inspired by McBride and McKinna’s work on views in
dependent type theory [McBride and McKinna, 2004b]. It allows one to “view” two
step functions as having a common partition.

The lemma is used by applying it to a goal of the form forall (s t : StepF X),

<expr> , which can be created by generalizing two step functions. There are only
two cases to consider. One case is when s and t are both constant step functions.
The other case is when s and t are each glued together from two step functions at
the same point . There is, however, a side condition to be proved. One has to show
that <expr> respects the equivalence relation on step functions for s and t. Fortu-
nately, <expr> is typically constructed from respectful functions, and proving this
side condition is easy.

This induction lemma was very useful for proving the combinator equations in Sec-
tion 12.2.4.

12.2.4 Combinators

The combinators B and I are preserved by every applicative functor (see Sec-
tion 12.1.3). For the applicative functor S, all lambda expressions are preserved.
To show this, it is sufficient to show that each of the BCKW combinators are pre-
served. These are the combinators defined by:

• B(f)(g)(x)4 f (g(x)) (compose)

• C(f)(x)(y)4 f(y)(x) (interchange)

• I(x)4 x (identity)

• K(x)(y)4 x (discard)

• W(f)(x)4 f(x)(x) (duplicate)

The identity combinator is redundant because I≍W(K), but it is still useful.

All lambda expressions can be rewritten in a “point free” form using these combina-
tors. Using combinators allows us to reason about the lambda calculus without
worrying about binders, which are notoriously difficult to do by hand (see Sec-
tion 4.7).
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Theorem 12.21. The remaining combinators, CKW, are preserved by the S

monad.

CP f @x@ y ≍SX f @ y@ x

KP x@ y ≍SX x

WP f @ x ≍SX f @ x@x

This means that we can lift any function definable with the λ-calculus to step func-
tions.

12.2.5 Lifting Theorems

During our development, we often needed to prove statements like the transitivity
of the order relation on the step functions:

∀fgh: S(Q). f {≤Q}g ⇒ g{≤Q}h ⇒ f {≤Q}h

We would like to deduce this statement from the transitivity of the corresponding
pointwise relation:

∀xyz :Q.x≤Q y⇒ y≤Q z⇒x≤Q z

First, we use a lemma that lifts universal statements about an arbitrary predicate
R :X⇒Y ⇒Z⇒ ⋆ to a universal statement about step functions:

(∀x:X.∀y:Y .∀z:Z.R(x, y, z))⇒
∀f : S(X).∀g: S(Y ).∀h: S(Z). fold⋆ (RP f @ g@ h)

This yields

∀fgh: S(Q). fold⋆((λxyz.x≤Q y⇒ y ≤Q z⇒x≤Q z)P f @ g@ h).

Next, we would like to “evaluate” the lambda expression as “applied” to the step
functions f , g, and h. Because f , g, and h are variables, we need to symbolically
evaluate the expression. We avoid dealing with binders by converting the lambda
expression into the combinator expression

S(B(S)(B(B(B(B)(⇒)))(≤Q)))(B(C(B(S)(B(B(⇒))(≤Q))))(≤Q))P f @ g@ h,

where S4 B(B(B(W))(C))(B(B)) and (⇒) and (≤Q) are prefix versions of these
infix functions. This substitution is sound because the combinator term and
lambda expression can easily be shown to be extensionally equivalent (by normal-
ization), and map and ap are well-defined with respect to extensional equality.
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We found the required combinator form by using lambdabot [Bromage and Jäger,
2006], a standard tool for Haskell programmers. It would have been interesting to
implement the algorithm for finding the combinator form of a lambda term in Coq;
however, this was not the aim of our current research.

Now that the lambda term is expressed in combinator form, we can repeatedly
apply the combinator equations from Section 12.1.3 and Section 12.2.4. These
equations are exactly the rules of “evaluation” of this expression “applied” to step
functions. We put these equations into a database of rewrite rules and used Coq’s
autorewrite system (see Section 2.2.8.1) as part of a small custom tactic to auto-
matically reduce this entire expression in one command, yielding

∀fgh : S(Q). fold⋆(f 〈≤Q〉g〈⇒〉g〈≤Q〉h〈⇒〉f 〈≤Q〉h).

Finally, we push the fold⋆ inside. To do so, we have proved a lemma which allows
us to distribute implication over fold⋆:

∀PQ: S(⋆).(fold⋆ (P 〈⇒〉Q))⇒ fold⋆(P )⇒ fold⋆(Q)

Repeated application of this lemma yields

∀fgh: S(Q). f {≤Q}g⇒ g{≤Q}h⇒ f {≤Q}h

as required.

12.2.6 The Identity Bounded Function

In order to integrate uniformly continuous functions, we compose them with the
identity bounded function to create a bounded function that can be integrated (see
Section 12.1.7). This requires defining the identity bounded function on [0,1].

The bounded functions are the completion of step functions under the L∞ metric.
To create a bounded function, we need to generate a step function within ε of the
identity function for every ε : Q+. The number of steps used in the approximation
will determine the number of samples of the continuous function f that will be
used. For efficiency, we want the approximation to have the fewest number of steps
possible. Therefore, we defined a function stepSample : positive ⇒ S(Q), where
positive is the binary positive natural numbers, such that stepSample n produces
the best approximation of the identity function with n steps.

It is unfortunate that the width of each step is computed during integration,
because we know that the result will always be equivalent to 1

n
for these particular

step functions. Perhaps some other data structure for step functions could be used
that explicitly stores the length of each step. However, the time spent computing
the length of the interval is usually much smaller that the time it takes to sample
the continuous function f .
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12.2.7 Correctness

We have proved our implementation correct by showing that our Riemann integral
is equivalent to the definition of the integral in the C-CoRN library [Cruz-Filipe,
2003]. This library contains many machine verified facts about the Riemann inte-
gral. The correctness is one theorem with a 300-line proof mostly consisting of
translating facts about the fast implementation of the reals to the C-CoRN library
and vice versa. The actual proof is quite general because it only uses certain gen-
eral properties of the integral, such as linearity and monotonicity.

As a by-product of our development, we can also compute the supremum of any
uniformly continuous function on [0,1].

12.2.8 Timings

The version of Riemann integration that we implemented applies to general contin-
uous functions and hence has bad complexity behavior. If we knew more about the
function, for instance if it is differentiable, faster algorithms could be used [Edalat,
1999].

Function Time

(answer 3 (Integrate01 Cunit)) 0.18s
(answer 2 (Integrate01 cos_uc)) 0.52s
(answer 3 (Integrate01 cos_uc)) 8.55s
(answer 3 (Integrate01 sin_uc)) 7.48s

Table 12.2. Time Eval vm_compute in ... carries out the reduction using Coq’s virtual
machine. The expression answer n asks for an answer to within 10−n. All computations
where carried out on an IBM Thinkpad X41.

12.3 Remarks

Because of the way that I have defined uniform continuity, one modulus of conti-
nuity applies to an entire function. Even for those parts of the domain where the
function changes slowly, we still must approximate the input to the same precision
that is needed for those parts where the function changes quickly. This reduces
performance somewhat for evaluation of these functions (at the segments where the
function changes slowly), but this causes particularly bad performance for integra-
tion.

Because we only have a global modulus of continuity, we must use uniform parti-
tions when creating an integrable function from a uniformly continuous function.
This means that the function is sampled just as often where the function changes
slowly as where the function changes quickly. This uniform sampling can be quite
expensive for integration.
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There is some potential to increase efficiency by using a “non-uniform” definition of
uniform continuity. That is to say, using a definition of uniform continuity that
allows different segments of the domain to have local moduli associated with them.
Ulrich Berger uses such a definition of uniform continuity to define integra-
tion [Berger, 2008]. Simpson also defines an integration algorithm that uses a local
modulus for a function that is computed directly from the definition of the func-
tion [Simpson, 1998]. However, implementing his algorithm directly in Coq is not
possible because it relies on bar induction, which is not available in Coq.
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Chapter 13

Compact Sets

How should we define what computable subsets of the plane are? Sir Roger Penrose
ponders this question at one point in his book The Emperor’s New Mind [Penrose,
1989]. Requiring that subsets be decidable is too strict; determining if a point lies
on the boundary of a set is undecidable in general. Penrose gives the unit disc,
{(x, y) |x2 + y2 ≤ 1}, and the epigraph of the exponential function, {(x, y) |
exp(x) ≤ y}, as examples of sets that intuitively ought to be considered com-
putable [Brattka, 2003]. Restricting one’s attention to pairs of rational or algebraic
numbers may work well for the unit disc, but the boundary of the epigraph of the
exponential function contains only one algebraic point. A better definition is
needed.

To characterize computable sets, we draw an analogy with real numbers. The com-
putable real numbers are real numbers that can be effectively approximated to
arbitrary precision. We can define computable sets in a similar way. We need a
dense subset of sets that have finitary representations. In the case of the plane, the
simplest candidate is the finite subsets of Q2. How do we measure the accuracy of
an approximation? Distances between subsets can be defined by the Hausdorff
metric (see Section 13.2). To construct the real numbers, we completed the rational
numbers (see Definition 11.1). Completing the finite subsets of Q2 with the Haus-
dorff metric yields the compact sets (see Section 13.3). Because we reason construc-
tively, the generated compact sets can be effectively computed to arbitrary preci-
sion.

The unit disc is constructively compact; it can be effectively approximated with
finite sets. When a computer attempts to display the unit disc, only a finite set of
the pixels can be shown. So instead of displaying an ideal disc, the computer dis-
plays a finite set that approximates the disc. This is the key criterion that Pen-
rose’s examples enjoy. They can be approximated to arbitrary precision and dis-
played on a raster.

Technically the epigraph of the exponential function is not compact; however, it is
locally compact. One may wish to consider constructive locally compact sets to be
computable sets. This would mean that any finite region of a computable set has
effective approximations of arbitrary precision.
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The usual definition of computable sets used in computable analysis says that a set
is computable if the distance to the set is a computable real-valued function. This
definition is equivalent to the definition using computable approximations. How-
ever, I believe that defining computable sets by effective approximations by finite
sets more accurately matches our intuition about sets that can be drawn by a com-
puter.

13.1 Product Metrics

Given two metric spaces X and Y , their Cartesian product X × Y forms a metric
space with the standard sup-metric.

Definition 13.1. Bε
X×Y ((a1, b1), (a2, b2))4 Bε

X(a1, a2)∧Bε
Y (b1, b2).

The product metric preserves each class of metric space defined in Section 9.3, so
the product of two decidable metrics is a decidable metric and so forth. Also, the
product of two prelength spaces is a prelength space.

The product metric interacts nicely with the completion operation. There is an iso-
morphism between C(X × Y ) and C(X) × C(Y ). One direction I call couple. The
other direction is defined by lifting the projection functions using map′:

couple : C(X)×C(Y )→C(X ×Y )

π1̄ : C(X ×Y )→C(X)

π2̄ : C(X ×Y ) →C(Y )

Definition 13.2. couple(x, y)4 λε.(x(ε), y(ε)).

I denote couple(x, y) by 〈x, y〉. The following theorems prove that these functions
form an isomorphism.

Theorem 13.3. C(X ×Y ) and C(X)×C(Y ) are isomorphic:

〈π1̄(z), π2̄(z)〉 ≍ z

(π1̄〈x, y〉, π2̄〈x, y〉) ≍ (x, y)

This isomorphism implies that C is a symmetric monoidal monad. Every symmetric
monoidal monad is also a commutative strong monad [Kock, 1972]. The tensorial
strength is given by the function strength :X ×C(Y )→C(X ×Y ) defined as follows:
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Definition 13.4. strength(a, y)4 〈â , y〉.

One could define strength first and then define couple in terms of strength and
swap : X × Y → Y × X , but this would lead to a less efficient definition of couple.
This is why I defined couple directly.

Tensorial strength should not be confused with functorial strength. Functorial
strength states that map itself is a morphism. I proved functorial strength in Sec-
tion 10.2. In a Cartesian closed category, tensorial and functorial strength are
equivalent [Kock, 1972]. However, our category of metric spaces with uniformly
continuous functions is not Cartesian closed because evaluation is not uniformly
continuous (see Section 10.3.2). This is why I had to develop the two notions of
strength separately.

13.2 Hausdorff Metrics

Given a metric space X , we can try to put a metric on predicates (subsets) of X .
We start by defining the Hausdorff hemimetric. A hemimetric is a metric without
the symmetry and identity of indiscernibles requirement. I define the hemimetric
relation over X⇒ ⋆ as follows.

Definition 13.5. Hε
X⇒⋆(A,B)4 ∀x∈A. ∃̃y ∈B.Bε

X(x, y).

Notice the use of the classical existential in this definition (see Definition 2.2). In
general, one does not need to know which point in B is close to a given point in A;
it is sufficient to know one exists without knowing which one. Furthermore, there
are cases when one cannot know which point in B is close to a given point in A.

This relation is reflexive and satisfies the triangle inequality. It is not symmetric. I
define a symmetric relation as follows.

Definition 13.6. Bε
X⇒⋆(A,B)4 Hε

X⇒⋆(A,B)∧Hε
X⇒⋆(B,A).

This relationship is reflexive, symmetric, and satisfies the triangle law. Notice that
if B ⊆ A then Hε

X⇒⋆(A, B) holds for all ε. The hemimetric captures the subset
relationship. If B ⊆ A and A ⊆ B (i.e. A ≍ B), then Bε

X⇒⋆(A, B) holds for all ε.
However, Axiom 5 for metric spaces requires the reverse implication: if Bε

X⇒⋆(A,
B) holds for all ε, then we want A ≍ B. Unfortunately, this does not hold in gen-
eral. Neither does the closedness property hold as required by Axiom 4. To make a
true metric space, we need to focus on a subclass of predicates that has more struc-
ture.
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13.2.1 Finite Enumerations

A finite enumeration of points from X is represented by a list. A point x is in a
finite enumeration if there classically exists a point in the list that is equivalent to
x. We are not required to know which point in the list is equivalent to x; we only
need to know that there is one. An equivalent definition is given by structural
recursion on lists.

Definition 13.7.

x∈ nil 4 ⊥
x∈ cons(y, l) 4 x≍ y ∨̃x∈ l.

We use the classical disjunction (see Definition 2.2) here because the constructive
union of two or more points may not be complete [Mandelkern, 1988]. To see why,
consider the set defined by the predicate z ∈A4 z ≍ x∨ z≍ y given two real num-
bers x, y: R. This predicate represents the set {x, y}. If A were complete, then
max (x, y) ∈ A. However, this would imply that max (x, y) ≍ x ∨ max (x, y) ≍ y,
which is equivalent to y≤ x∨x≤ y. This is well-known to be unprovable. Hence we
cannot always prove that the constructive union of even two points is compact.

Because (constructively) finite sets are not necessarily compact, they cannot be
used as a basis for compact sets. However, when the classical disjunction is used in
Definition 13.7, the resulting enumerations are always complete and compact.

Two finite enumerations are considered equivalent if they have exactly the same
members.

Definition 13.8. l1≍ l24 ∀x.x∈ l1⇔x∈ l2.

If X is a stable metric space (recall Definition 9.14), then the space of finite enu-
merations over X , F(X), is also a stable metric space. The Hausdorff metric with
the membership predicate defines the distance relation.

Definition 13.9. Bε
F(X)

(l1, l2) 4 Bε
X⇒⋆(λx.x∈ l1, λy.y ∈ l2).

This distance relation is both closed (Axiom 4) and is compatible with our equiva-
lence relation for finite enumerations (Axiom 5), so this truly is a metric space.
The proof that the distance relation is closed relies crucially on stability at one
point (see Section 13.2.2).

If X is a located metric space, then F(X) is also a located metric space. However,
to prove that F(X) is a prelength space, I need to assume that X is both a pre-
length space and a located metric space. I believe that if a classical existential was
used in the definition of prelength space (see Section 9.5.5), then one could prove
that F(X) is a prelength space without assuming that X is a located metric space.
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Finite enumerations also form a monad (although I have not verified this in Coq).
The unit : X ⇒ F(X) function creates an enumeration with a single member. The
join : F(F(X)) ⇒ F(X) function returns the finite union of finite enumerations. The
map: (X ⇒ Y ) ⇒ (F(X) ⇒ F(Y )) function takes a function f : X ⇒ Y and replaces
every element x from a finite enumeration with f(x).

13.2.2 Mixing Classical and Constructive Reasoning

The proof that the distance relation for finite enumerations is closed makes essen-
tial use of classical reasoning. Given ε, suppose that Bδ

F(X)
(l1, l2) holds whenever

ε < δ. We need to show that Bε
F(X)

(l1, l2) holds. By the definition of the metric,

this requires proving (in part) ∀x ∈ l1. ∃̃y ∈ l2.Bε
X(x, y). From our assumptions, we

know that ∀x∈ l1. ∃̃y ∈ l2.Bδ
X(x, y) holds for every δ greater than ε. If I had used a

constructive existential in the definition of the Hausdorff hemimetric, we would
have a problem. Each different value δ could produce a different y witnessing
Bδ

X(x, y). In order to use the closedness property from X to conclude Bε
X(x, y),

we need a single y such that Bδ
X(x, y) holds for all δ greater than ε. Classically we

would use the infinite pigeon hole principle to find a single y that occurs infinitely

often in the stream of ys produced from δ ∈
{

ε +
1

n

∣

∣

∣
n: N+

}

. Such reasoning does

not work constructively. Given an infinite stream of elements drawn from a finite
enumeration, there is no algorithm that will determine which one occurs infinitely
often.

Fortunately, because I used classical quantifiers in the definition of the Hausdorff
metric, we can apply the infinite pigeon hole principle to this problem. We classi-

cally know there is some y that occurs infinitely often when δ ∈
{

ε +
1

n

∣

∣

∣
n: N+

}

,

even if we do not know which one. For such y, Bδ
X(x, y) holds for δ arbitrarily

close to ε, and therefore Bδ
X(x, y) must hold for all δ greater than ε. By the closed-

ness property for X, Bε
X(x, y) holds as required. The other half of the definition of

Bε
F(X)

(l1, l2) is handled similarly.

Recall from Chapter 2 that the classical fragment of constructive logic requires that
proof by contradiction hold for atomic formulas in order to deduce the rule
¬¬ϕ ⇒ ϕ. Because Bε

X(x, y) is a parameter, we do not know if it is constructed
out of classical connectives. To use the classical reasoning needed to apply the
pigeon hole principle, we assume that ¬¬Bε

X(x, y) ⇒ Bε
X(x, y) holds. This is the

crucial point where stability of the metric for X is used.

13.3 Metric Space of Compact Sets

Completing the metric space of finite enumerations yields a metric space of com-
pact sets.
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Definition 13.10. K4 C ◦F.

The idea is that every compact set can be represented as a limit of finite enumera-
tions that approximate it. In order for a compact set to be considered a set, we
need to define a membership relation. The membership is not over X , because
compact sets are supposed to be complete and X may not be a complete space
itself. Instead, membership is over C(X), and it is defined for x : C(X) and S: K(X)
as follows:

Definition 13.11. x∈S4 ∀ε1 ε2. ∃̃y ∈S(ε2).Bε1+ε2

X (x(ε1), y).

A point is considered to be a member of a compact set S if it is arbitrarily close to
being a member of all approximations of S. Thus K(X) represents the space of
compact subsets of C(X).

13.3.1 Correctness of Compact Sets

Bishop and Bridges define a compact set in a metric space X as a set that is com-
plete and totally bounded [Bishop and Bridges, 1985]. In my framework, we say a
predicate A : X ⇒ ⋆ is complete if whenever x : C(X) is made from approximations
in A, then x is in A:

∀x: C(X).(∀ε.x(ε)∈A)⇒∃z ∈A. ẑ ≍ x

A set B:X⇒ ⋆ is totally bounded if there is an ε-net for every ε :Q+. An ε-net is a
list of points l from B such that for every x∈B there (constructively) exists a point
z that is constructively in l and Bε

Y (x, z). Bishop and Bridges use the strong con-
structive definition of list membership that tells which member of the list the value
is.

∀ε:Q+.∃l: listX.(∀x∈ l.x∈B)∧ (∀x∈B.∃z ∈ l.Bε
Y (x, z))

Does my definition of compact sets correspond with Bishop and Bridges’s defini-
tion? The short answer is yes, but there is a small caveat. My definition of metric
space is more general than the one that Bishop and Bridges use. Bishop and
Bridges require a distance function d : X ⇒ X ⇒ R. My more liberal definition of
metric space does not have this requirement. I have verified that my definition of
compact is the same as Bishop and Bridges’s, assuming that X is a located metric
(see Definition 9.12). If a metric space has a distance function, then it is a
located metric. Thus, my definition of compact corresponds to Bishop and
Bridges’s definition of compact for those metric spaces that correspond to Bishop
and Bridges’s definition of metric space.
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We prove that the two definitions are the same by constructing an isomorphism
between the two structures. This requires constructing two functions, one that
maps our compact sets to Bishop-compact sets and another that maps Bishop-com-
pact sets to our compact sets.

The two definitions are fairly similar. The major difference is that the points in
Bishop’s ε-nets must be members of the compact set. On the other hand, it is pos-
sible that none of the points in my ε-approximations are actually part of the com-
pact set.

Defining the function from Bishop-compact sets to our compact sets is fairly easy.
Given a Bishop-compact set S, we can define the ε-approximation by first finding a
ε

2
-net, and then approximating each of the points in the net to within ε

2
. The result

is a list of points in X that when interpreted as a finite enumeration is within ε of
the compact set that S represents. These approximations are coherent; therefore,
the function producing these finite sets is a regular function, so it is a compact set.

Computing the Bishop-compact set given a compact set S is more difficult. We
need to prove that this set is complete and totally bounded. Proving that it is com-
plete is easy. Proving that it is totally bounded is the difficult part. We need to
construct an ε-net that contains points from S, but our approximations generally
do not lie inside S. To construct the ε-net, we start by computing a δ1-approxima-
tion as our seeds. For each seed, we will construct a new point in C(X) that is a
member of the compact set S, and within γ of its seed. By choosing δ1 and γ such
that δ1 + γ ≤ ε, the list of constructed points will be an ε-net.

Given a point from a δ1-approximation of S, we would like to select a point inside
the kδ1-approximation of S that is within δ1 + kδ1 of the first point. Classically we
know such a point exists because the approximations are coherent (Definition 13.5);
however, we don’t know which point it is. Without a decidable metric (Defini-
tion 9.11), we cannot search the list to find the point.

To overcome this we use the assumption that X is a located metric (Defini-
tion 9.12). Using locatedness we still cannot search for a point within δ1 + kδ1, but
we can search for a point within δ1 + kδ1 + δ2.

With a suitable point in the kδ1-approximation of S found, we can repeat the
above procedure to find a point in the k2δ1-approximation that is within
kδ1 + k2δ1 + kδ2 of our second point. By repeating this procedure and taking the

limit, a point y : C(X) is constructed that is within δ1 + kδ1 + δ2

1− k
of the initial point

from the δ1-approximation. Furthermore, y is in the compact set because it is con-
structed from points that are drawn from finer and finer approximations of S.
Using the above procedure we can map every point in the in the δ1-approximation

to new point from S. These new points form a
(

δ1 + δ2 +
δ1 + kδ1 + δ2

1− k

)

-net because

for every point x in the set S we can find some point z in the δ1-approximation
that is within δ1 + δ2 of x and the point in our net generated from the seed z is
within δ1 + kδ1 + δ2

1− k
of z. By choosing suitable values for δ1, δ2, and k, we can ensure

that
(

δ1 + δ2 +
δ1 + kδ1 + δ2

1− k

)

≤ ε, and hence our net is an ε-net. For concreteness, in

my construction I chose k4 1

4
, δ14 ε

5
, and δ24 ε

5
.
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Thus our compact sets are interpreted as a totally bounded and complete set, and
hence correspond to a Bishop and Bridges style compact set. To complete the proof
that our two notions are isomorphic, we need to show that composing the functions
to and from Bishop-compact sets and to and from my compact sets yield the iden-
tity function. This proof is straightforward.

13.3.2 Distribution of F over C

Recall that composition of two monads, A ◦ B, forms a monad when there is a dis-
tribution function dist : B(A(X)) → A(B(X)) satisfying the laws given in Sec-
tion 12.1.9. For compact sets, K(X) 4 (C ◦ F)(X), the distribution function dist :
F(C(X))→C(F(X)) is defined by

Definition 13.12. dist(l)4 λε.mapF(λx.x(ε))(l).

This function interprets a finite enumeration of points from C(X) as a compact set.
Thus K is also a monad.13.1

13.3.3 Compact Image

One can define the compact image of a compact set S : K(X) under a uniformly
continuous function f̌ : C(X) → C(Y ), by recalling that f̌ denotes bind(f), and by
noting that applying f to every point in a finite enumeration is a uniformly contin-
uous function, mapF(f) : F(X) → F(C(Y )). Composing this with dist yields a uni-
formly continuous function from finite enumerations F(X) to compact sets K(Y ).
Using bind (Definition 10.18), this function can be lifted to operate on K(X). The
result is the compact image function.

Definition 13.13. f ↾S4 bindC(dist ◦mapF(f))(S).

Although Bishop and Bridges would agree that the result of this function is com-
pact, they would not say that it is the image of S because one cannot construc-
tively prove

∀y. y ∈ f ↾S⇒∃x∈S. f̌ (x)≍ y.

Instead, they would consider f ↾ S to be the closure of the image of S under f . In
constructive analysis, the image of S under f , namely λy.∃x ∈ S. f̌ (x) ≍ y, is not
necessarily compact [Mandelkern, 1988]. Consider f : Bool ⇒ R where f(true) 4 x

and f(false) 4 y given two real numbers xy: R. The Booleans are compact (using
the discrete topology), but the image of f may not be provably compact for the
reason given in Section 13.2.1.

13.1. I have not yet verified the distribution laws for the F and C monads, but the laws are not
needed for any of the proofs in my work.
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I believe one can prove (but I have not verified this in Coq) the classical statement

∀y. y ∈ f ↾S⇒ ∃̃x∈S. f̌ (x)≍ y.

When f̌ is injective, as it will be for our graphing example in Section 13.4.1, the
constructive existential statement holds.

13.4 Plotting Functions

There are many examples of constructively compact sets. This section illustrates
one application of compacts sets: plotting functions.

13.4.1 Graphing Functions

Given a uniformly continuous function f̌ : C(X) → C(Y ) and a compact set
D : K(X), the graph of the function over D is the set of points {(x, f̌ (x)) |x ∈ D}.
This graph can be constructed as a compact set G(D, f): K(X × Y ). A single point
is graphed by the function g(f)(x)4 〈x̂ , f(x)〉. This function is uniformly contin-
uous, g(f):X→ C(X × Y ). The graph G(D , f) is defined as the compact image of
D under g(f).

Definition 13.14. G(D , f)4 g(f) ↾D.

13.4.2 Rasterizing Compact Sets

Given a compact set in the plane S : K(Q × Q), we can draw an image of it, or
rather we can plot an approximation of it. This process consists of two steps. The
first step is to compute an ε-approximation l4 S(ε). The finite enumeration l is a
list of rational coordinates. The next step is to move these points around so that
all the points lie on a raster. A raster is simply a two dimensional matrix of
Booleans. Given coordinates for the top-left and bottom-right corners, a raster can
be interpreted as a finite enumeration. Using advanced notation features in Coq, a
raster can be displayed inside the proof assistant [Stein, 2003]. Most importantly,
when the constructed raster is interpreted, it is provably close to the original com-
pact set.

13.4.3 Plotting the Exponential Function

Given a uniformly continuous function f̌ :R→R and an interval [a, b], the graph of
f̌ over this compact interval is a compact set. The graph is an ideal mathematical
curve. This graph can then be plotted yielding a raster that when interpreted as a
finite enumeration is provably close to the ideal mathematical curve.
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Figure 13.1. A theorem in Coq stating that a plot on a 42 by 18 raster is close to the
graph of the exponential function on [−6, 1].

Figure 13.1 shows a theorem in Coq that states the (ideal mathematical) graph of
the exponential function (which is uniformly continuous on (−∞, 1]) restricted to
the range [0, 3] on the interval [−6, 1] is within 324

2592
(which is equivalent to 1

8
) of

the finite set represented by raster shown with the top-left corner mapped to
(−6, 3) and the bottom-right corner mapped to (1, 0). The raster is 42 by 18, so, by
considering the domain and range of the graph, each pixel represents a 1

6
by 1

6

square. The error between the plot and the graph must always be greater than half
a pixel. I chose an ε that produces a graph with an error of 3

4
of a pixel. In this

case 3

4
· 1

6
=

1

8
, which is the error given in the theorem.

There is one small objection to this image. Each block in the picture represents an
infinitesimal mathematical point lying at the center of the block, but the block
appears as a square the size of the pixel. This could be fixed by interpreting each
block as a filled square instead of as a single point. This change would simply add
an additional 1

2
pixel to the error term. This has not been done yet in this early

implementation.

13.5 Alternative Hausdorff Metric Definition

There is another possible definition for the Hausdorff metric. One could define the
Hausdorff hemimetric as

H ′
ε
X⇒⋆(A,B)4 ∀x∈A.∀δ.∃y ∈B.Bε+δ

X (x, y).
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The extra flexibility given by the δ term also allows one to conclude that there is
some y ∈ B that is within ε of x without telling us which one (again, it may be the
case that we cannot know which y is the one). Our original definition Hε

X⇒⋆(A,B)
is implied by H ′

ε
X⇒⋆(A, B); however, the alternative definition yields more con-

structive information.

The two definitions are equivalent under mild assumptions. When X is a located

metric, then Hε
X⇒⋆(A,B)⇒H ′

ε
X⇒⋆(A,B). This is a very common case and allows

us to recover the constructive information in the H ′ version from the H version.
This was implicitly done in the proof from Section 13.3.1

The constructive existential in the definition of H ′ would make the resulting metric
not provably stable. It is somewhat unclear which version is the right definition for
the constructive Hausdorff metric. The key deciding factor for me was that I had
declared the distance relation to be in the Prop universe (see Section 2.3.2). This
means that even if I used the H ′ definition in the Hausdorff metric, its information
would not be allowed by Coq to construct values in Set. For this reason, I chose
the H version with the classical quantifiers for the definition of the Hausdorff
metric. Values with classical existential quantifier type have no information in them
and naturally fit into the Prop universe.

13.6 Compactness and Computability

Warning: This section contains a philosophical discussion of the merits of construc-
tive language over the language of classical computation theory. The mathematics
used in this section serve to illustrate my position. I have no guarantees about the
accuracy of the images; I have made no formal, nor informal proofs of the conver-
gence of Equation 13.1 below, and I cannot guarantee that the constructive formula
in Equation 13.2 is correct. However, I believe that the images are reasonably accu-
rate and the formulas are correct and could be formalized.

Is there a computer program that outputs 1 if the Riemann hypothesis is true and
outputs 0 if the Riemann hypothesis is false? This is a common puzzle posed in
computer science courses on the theory of computation. The classical solution to
this puzzle is, Yes! Consider two programs, one that outputs 0 and another that
outputs 1. One of these two programs satisfies the specification, so a computer pro-
gram does exist even if we don’t know which one.

This sort of paradoxical result is due to the language of classical logic that is used
in classical computation theory. If we phrase the same question in terms of con-
structive mathematics, we ask, “does RH ∨ ¬RH hold?” where RH is the statement
of the Riemann hypothesis. Now we must answer, “We don’t know,” which is the
expected answer.
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One might dismiss this as a silly example that everyone understands after encoun-
tering it once and it is no longer a concern after that. However, this problem with
the language of classical computation theory can potentially appear in far more
subtle places.

Consider, for example, Braverman and Yampolsky’s theorem that all filled Julia
sets are computable [Braverman and Yampolsky, 2009]. Yet, there are Julia sets
that we do not know how to compute. Let us focus on quadratic polynomials
pc(z)4 z2 + c for this example. Let Kc be the filled Julia set for the polynomial pc.
Classically, the set Kc is a compact subset of C that can be defined as follows:

z ∈Kc4 ∃M.∀n:N.
∣

∣

∣
pc
(n)

(z)
∣

∣

∣
≤M

This means that the set Kc contains all the complex numbers z such that all the
iterations of z under pc remain bounded. Classically, a compact set A is said to be
a computable subset of the real plane when there exists a computable function
f : N ⇒ F(Q2), such that d(f(n), A) ≤ 2−n using the Hausdorff metric.13.2 In other
words, A can be drawn on any arbitrarily high resolution raster display by a single
program (note the similarity with my definition of constructively compact sets).
When we say Kc is computable, we are identifying C with the real plane in the
usual way.

We are going to construct an example of a computable filled Julia set that we do
not know how to compute. We are going to do this by creating a Brouwerian coun-
terexample [Richman, 1983]. Let ∀n: N. ϑ(n) be your favourite unsolved Π1

problem. For concreteness, I will take ϑ(n)4 ¬ς(n) where ς(n) states that when n
is considered as an ASCII file, it contains a valid Coq proof of False from no
axioms and without using the tactic language (only (co-)inductive declarations and
definitions allowed). This means that ∀n: N.ϑ(n) states that Coq is consistent. I
have chosen this example because, by the second incompleteness theorem (see Sec-
tion 7.6), Coq cannot prove this statement (unless Coq is inconsistent).

Consider the sequence ̺: N ⇒ R where ̺0 4 1

4
and ̺n+1 is the unique solution in

[0, ̺n] such that

p1

4
+̺n+1

(n+1)
(

3

8

)

=
5

8
. (13.1)

The sequence ̺ is strictly decreasing and has a limit of 0. The sequence is con-

structive because p1

4
+̺n

(n)
(

3

8

)

− 5

8
is a polynomial in ̺n, so its roots can be con-

structed [Geuvers et al., 2002].

Define ǫ:R to be the regular function

ǫ(ε)4 inf ({̺0}∪ {̺n+1 | ε< ̺n+1∧∀m.m≤n⇒ϑ(m)}).

13.2. This definition of computable is somewhat different than the one given by Braverman and
Yampolsky, but it is equivalent.
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The value ǫ is a well-defined constructive real number, because {̺n+1 | ε < ̺n+1} is
a finite set, and ∀m.m ≤ n ⇒ ϑ(m) is a decidable predicate. If Coq is consistent,
then ǫ ≍ 0. If Coq is inconsistent, then ǫ ≍ ̺n where n is an ASCII encoding of a
proof of False. According to Braverman and Yampolsky’s theorem, K1

4
+ǫ

is a com-

putable filled Julia set, because all filled Julia sets are computable. Consider Figure
13.2. If Coq is consistent, then K1

4
+ǫ

is approximately the image on the left, and if

Coq is inconsistent, then K1

4
+ǫ

is approximately the image on the right.13.3 How-

ever, just like the previous Riemann hypothesis puzzle, we do not know which
image is correct. The language of classical computation theory misleads us again,
and this time it is not with a result that is trivial enough to dismiss as a harmless
puzzle.

Figure 13.2. One of these images represents the computable set K1

4
+ǫ

, but which one?

Of course, Braverman and Yampolsky do not mislead their readers. They make
themselves perfectly clear that the filled Julia sets are not uniformly computable.
However, the fact that they need to go through hoops to clarify their result serves
to illustrate the deficiency of the language of classical computation.

13.3. These images were generated by the program Mandel 5.2 [Jung, 2008], which does not use a
correct algorithm. It instead estimates the image and uses floating point calculations. I make no
guarantee of the accuracy of these images, but they are presumably reasonably accurate. If one
used the algorithms given by Braverman and Yampolsky, then “loops” “inside” the right hand
image would not get drawn until ǫ had been computed to sufficient accuracy to prove that Coq is
inconsistent. In order to generate a reasonable image for this case, I have carefully chosen the
sequence ̺n so that K1

4
+̺n

converges more uniformly [Douady, 1994]. This allows me to approxi-

mate K1

4
+̺n

for large n by K1

4
+̺n

for small n. I have not computed the modulus of convergence

and simply used an n that seems to be large enough to give accurate results for the resolution
used.
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13.6.1 A Constructive Approach to Filled Julia Sets

Suppose that Braverman and Yampolsky used the language of constructive mathe-
matics instead. How would they present their results? Instead of asking if a com-
pact set was classically computable, they would simply ask, “Is every filled Julia set
(constructively) compact?”. Instead of concluding, “Yes”, their work would result in
a theorem such as:

∀c:C.( pc has an attracting orbit
∨ pc has a parabolic orbit
∨ pc has a Siegel orbit
∨ pc has a Cremer orbit
∨ all orbits of pc are repelling )⇒Kc is compact

(13.2)

The constructive result clearly states, right in the theorem, exactly the extra infor-
mation beyond the value of c that is needed to compute Kc. One does not need to
go fishing through the proofs to get this information (as is needed for the classical
theorems). Note that a proof of the big disjunction in the hypothesis of the the-
orem contains more information than simply which clause holds. Each clause con-
tains constructive details about the particular type of orbit.

According to classical mathematics, the big disjunction is true and can be removed
from the hypothesis. However, because of the discontinuity of λc. Kc at various
points, the theorem ∀c:C.Kc is compact cannot be constructed.

The constructive theorem cannot be used to prove that K1

4
+ǫ

is compact in Coq.

Coq cannot prove
(

p1

4
+ǫ

is parabolic ∨ all orbits of p1

4
+ǫ

are repelling
)

—all the

other clauses are provably false—because such a theorem would contradict the
second incompleteness theorem (unless Coq is inconsistent). This corresponds to
our understanding that we do not know how to compute K1

4
+ǫ
. However, we can

prove

(Coq is consistent∨Coq is inconsistent)⇒K1

4
+ǫ

is compact.

This example illustrates how the constructive formulation better conveys com-
putability results than the language of classical computability theory.
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Chapter 14

Conclusion

The major goal of this part was to develop an effective implementation of real num-
bers that is efficient enough to be used for computation inside a proof assistant. I
approached this problem by first creating a generic completion operation on metric
spaces. I needed to create a completion operation that was independent of the real
numbers. This naturally led to defining metric spaces using a distance relation (see
Chapter 9). This definition is more general than the one given by Bishop and
Bridges [Bishop and Bridges, 1985].

I showed that the completion operation has a familiar monad structure (see
Chapter 10), and I used these monad operations to define functions on complete
metric spaces. The monad operations nicely separate the problem of defining func-
tions on complete spaces into two separate parts: defining the operation on the
underlying dense space and then proving that the definition is uniformly contin-
uous.

I defined the real numbers as the completion of the rational numbers (see
Chapter 11). I defined various elementary functions on the real numbers and
showed that they can be implemented efficiently enough to allow real numbers to
be approximated inside the Coq proof assistant. I used my efficient real numbers to
build a simple tactic for proving strict equalities between real number expressions.

With the major goal achieved, I then looked at other applications of the completion
operation. I defined the integrable functions as the completion of the rational step
functions under the L1 metric (see Chapter 12). I defined Riemann integration of
uniformly continuous functions by converting them to integrable functions. We saw
that this definition was easy to extend to define Stieltjes integration.

The other application of the completion operation was for compact sets. I defined
the compact sets as the completion of the finite sets under the Hausdorff metric
(see Chapter 13). The generated compact sets were effective and could be plotted
inside the Coq proof assistant. I showed how to plot uniformly continuous func-
tions and use these plots in theorems to prove that the plots accurately represent
the graph of the function.

The development of compact sets also showed how one can mix classical and con-
structive reasoning. I used the classical infinite pigeon hole principle to prove the
closedness property of the metric (see Section 13.2.2). I estimate that 80% of the
time developing constructive analysis, one is in a context where classical reasoning
can apply. For example, when your (sub-)goal is to prove that x ≍ y for two real
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numbers x and y, then that goal is stable and you are allowed to perform classical
case analysis on y ≤ z ∨̃ z ≤ y or any other classical disjunction or existential (see
Theorem 2.3 and Theorem 2.4). Even when developing constructive theorems, one
usually provides a witness early in the proof and classical reasoning can be used for
the remaining goal.
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Samenvatting

Onvolledigheid & Volledigheid:
Formalisatie van Logica en Analyse in Typetheorie

Dit proefschrift omvat twee bewijsontwikkelingen in de constructieve typetheorie:
een bewijs van de eerste onvolledigheidsstelling van Gödel en een ontwikkeling van
exacte reële rekenkunde. Ik werk in een constructieve typetheorie, omdat dit sys-
teem de unieke mogelijkheid heeft om afhankelijk getypeerd programmeren vrij te
combineren met bewijzen in natuurlijke deductie. Door het Curry-Howard isomor-
fisme gebruiken deze twee taken precies dezelfde taal. Het programmeeraspect en
het bewijsaspect van deze taal ondersteunen elkaar. Bewijzen worden gebruikt voor
het certificeren van de correctheid van functies, en correcte functies kunnen worden
geëvalueerd in bewijzen om problemen op te lossen.

Hoofdstuk 1 en Hoofdstuk 2 introduceren het onderwerp van mijn proefschrift en
geven een korte introductie tot de soort typetheorie die ik zal gaan gebruiken.
Beide ontwikkelingen zijn geformaliseerd met de Coq bewijs-assistent, een imple-
mentatie van constructieve typetheorie. Ik toon hoe klassieke logica kan worden
gezien als een fragment van constructieve logica, zodat klassiek redeneren ook
wordt ondersteund in constructieve typetheorie.

In deel I beschrijf ik mijn ontwikkeling van de eerste onvolledigheidsstelling van
Gödel. Het begint met Hoofdstuk 3, dat een korte inleiding en een beschrijving van
de onvolledigheidstelling geeft.

De beschrijving van mijn formele bewijzen begint in Hoofdstuk 4, waarin ik mijn
datastructuur voor eerste orde formules en mijn datastructuur voor bewijzen in de
eerste-orde logica beschrijf. Ik definiëer twee axiomasystemen: Peano’s rekenkunde
en een zeer zwak rekenkundig systeem, genaamd NN. Deze interne logica is klas-
siek, terwijl de logica van Coq constructief is. Ik heb gekozen voor een traditionele
definitie van substitutie in formules waarin gebonden variabelen hernoemd worden
om te voorkomen dat vrije variabelen worden gebonden. Deze keuze veroorzaakt
veel problemen door het hele bewijs.

Hoofdstuk 5 bespreekt hoe ik verschillende structuren als natuurlijke getallen
codeer en hoe ik aantoon dat de functies die op deze structuren werken voorgesteld
kunnen worden door rekenkundige formules. In plaats van de hoofdstelling van de
rekenkunde, zoals Gödel oorspronkelijk gebruikte, gebruik ik recursief Cantor’s
paringsfunctie om de abstracte syntaxbomen van formules en bewijzen te coderen.
In Sectie 5.2, definiëer ik een taal voor primitief recursieve functies. Ik heb primitief
recursieve programma’s geschreven voor alle benodigde functies op formules en

147



bewijzen. Ik bewijs dat deze primitief recursieve programma’s correcte representa-
ties van de oorspronkelijke Coq functies zijn. In Sectie 5.4, beschrijf ik mijn bewijs
dat alle primitief recursieve functies voorgesteld kunnen worden door rekenkundige
formules.

Hoofdstuk 6 geeft mijn formele uitspraak van de onvolledigheidsstelling. Ik bewijs
dat het systeem NN wezenlijk onvolledig is. In het bijzonder is Peano’s rekenkunde
onvolledig, omdat ik ook bewijs dat Peano’s rekenkunde consistent is door aan te
tonen dat de natuurlijke getallen van Coq een model van Peano’s rekenkunde
vormen. Tenslotte, geeft Hoofdstuk 7 een paar slotopmerkingen over dit bewijs en
beschrijft wat nog meer nodig zal zijn om de tweede onvolledigheidsstelling te
bewijzen.

In deel II, beschrijf ik mijn implementatie van exacte reële rekenkunde door eerst
een algemene implementatie van volledige metrische ruimten maken. Dit deel
begint met Hoofdstuk 8, dat een korte inleiding en achtergrondinformatie over
Bishop en Bridges’s benadering van de reële getallen geeft [Bishop and Bridges,
1985].

Hoofdstuk 9 introduceert mijn formele definitie van een metrische ruimte en ver-
schillende classificaties van metrische ruimten met extra eigenschappen. Uniform
continue functies tussen metrische ruimten worden gedefinieerd. Zij spelen een cen-
trale rol in dit werk.

Hoofdstuk 10 definiëert de completeringsoperatie die een volledige metrische ruimte
maakt uit een willekeurige metrische ruimte. Ik toon aan dat deze completeringso-
peratie de vereiste eigenschappen heeft om er een monad van te maken. Ik definieer
operaties die uniform continue functies over metrische ruimten liften tot uniform
continue functies over de completering van die metrische ruimten.

Hoofdstuk 11 definiëert de reële getallen als de completering van de rationale
getallen. De lichaamsoperaties voor de reële getallen worden gedefinieerd door de
operaties van de rationale getallen te liften. Andere elementaire functies definieer ik
eerst op de rationale getallen als de limiet van een machtreeks. Daarna worden ook
zij gelift zodat ze op alle reële getallen werken. Sectie 11.5 beschrijft manieren om
sommige veelvoorkomende operaties efficiënter te definiëren. Al mijn functies
kunnen worden uitgevoerd binnen Coq en zijn efficiënt genoeg om benaderingen
praktisch uit te rekenen. Ik heb een tactiek geschreven die zulke berekeningen
gebruikt om ongelijkheden tussen gesloten uitdrukkingen van reële getallen op te
lossen.

Het doel van mijn werk aan volledige metrische ruimten is de reële getallen te defi-
niëren. Echter, mijn implementatie van volledige metrische ruimten is algemeen.
Als illustratie hiervan beschrijft Hoofdstuk 12 de metrische ruimte van integreer-
bare functies als de completering van de formele stapfuncties met de L1-metriek.
Uniform continue functies kunnen worden afgebeeld op integreerbare functies op [0,
1] en geïntegreerd worden. Sectie 12.1.8 toont hoe de Stietljes integraal gratis uit
dit werk volgt.
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Hoofdstuk 13 geeft een andere toepassing van volledige metrische ruimten, dit keer
op compacte verzamelingen. De metrische ruimte van compacte verzamelingen
wordt als de completering van de ruimte van eindige verzamelingen met de Haus-
dorffmetriek gedefiniëerd. Dit betekent dat elke compacte verzameling benaderd
kan worden door een eindige verzameling. Bovendien kan zo’n eindige verzameling
worden gerasterd en weergegeven in het Coq systeem. Ik toon bijvoorbeeld aan dat
de grafiek van een uniform continue functie op een compact interval compact is.
Figuur 13.1 toont een benadering van de exponentiële functie getekend met Coq.
Sectie 13.2.2 geeft een mooi voorbeeld hoe men klassieke en constructieve redene-
ringen kan mixen. Sectie 13.6 bespreekt waarom ik denk dat constructieve logica
een betere taal is om te praten over berekenbaarheid dan de klassieke berekenbaar-
heidstheorie.

Hoofdstuk 14 eindigt met conclusies uit dit onderzoek.
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